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ABSTRACT  We introduce a multisensor navigation system for autonomous surface vessels (ASVs)
intended for water-quality monitoring in freshwater lakes. Our mission planner uses satellite imagery as
a prior map, formulating offline a mission-level policy for global navigation of the ASV and enabling
autonomous online execution via local perception and local planning modules. A significant challenge is
posed by the inconsistencies in traversability estimation between satellite images and real lakes, due to
environmental effects such as wind, aquatic vegetation, shallow waters, and fluctuating water levels. Hence,
we specifically modeled these traversability uncertainties as stochastic edges in a graph and optimized for
a mission-level policy that minimizes the expected total travel distance. To execute the policy, we propose
a modern local planner architecture that processes sensor inputs and plans paths to execute the high-level
policy under uncertain traversability conditions. Our system was tested on 3 km-scale missions on a Northern
Ontario lake, demonstrating that our GPS-, vision-, and sonar-enabled ASV system can effectively execute
the mission-level policy and disambiguate the traversability of stochastic edges. Finally, we provide insights
gained from practical field experience and offer several future directions to enhance the overall reliability of
ASV navigation systems.

INDEX TERMS  Autonomous navigation, environmental monitoring, marine robots, motion planning, path

planning.

I. INTRODUCTION

UTONOMOUS surface vessels (ASVs) have seen

increasing attention as a technology to monitor rivers,
lakes, coasts, and oceans in recent years [3], [10], [19],
[22], [27], [60], [61], [71]. A fundamental challenge to the
wide adoption of ASVs is the ability to navigate safely and
autonomously in uncertain environments, especially for long
durations. For example, many existing ASV systems require
the user to precompute a waypoint sequence. The robot then
visits these target locations on a map and attempts to execute
the path online [87], [91]. However, disturbances, such as
strong winds, waves, unseen obstacles, aquatic plants that
may or may not be traversable, and even simply changing
visual appearances in a water environment, are challeng-
ing for ASV navigation (Fig. 1). Many potential failures in
robot perception and control systems may also undermine
the mission’s overall success. Engineering challenges, such

as power and computational budget, also make it challenging
to implement many robot autonomy modules and integrate
them with onboard sensors. To ensure the safety of the overall
operation, users of the ASV system may also wish to under-
stand its high-level behavior and any decisions made during
the mission.

Our long-term goal is to use an ASV to monitor lake envi-
ronments and collect water samples for scientists. A require-
ment for achieving this, and the primary focus of this
article, is to ensure robust global and safe local navigation.
To enhance the robustness of the overall system, we identify
waterways that are prone to local blockage as stochastic edges
and plan mission-level policies offline on our high-level map.
Uncertainties that arise during policy execution are handled
by the local planner. One planning framework that is suitable
for modeling uncertain paths is the Canadian traveler problem
(CTP) [72], a variant of the shortest path planning problem
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FIGURE 1. Real-world challenges that motivate the use of stochastic edges in our planning setup. (a) Strong wind. (b) Protruding logs.

(c) Shallow water. (d) Aquatic plants.

for an uncertain road network. The most significant feature
in a CTP graph is the stochastic edge, which has a probability
of being blocked. The state of any stochastic edge can be
disambiguated by visiting the edge. Once the state has been
visited and classified as traversable or not, it remains the
same. Separating planning into a high-level mission planner
and a local online planner offers several advantages. The
high-level planner creates a global policy with contingencies
that can be adjusted online for any unmapped obstacles.
Oftline planning improves interpretability and reduces the
computational resources required online. This allows the user
to easily inspect the planned paths before deploying the robot.
With offline planning, more time can be allocated to find
the optimal global paths. The local planner can then focus
on accurately tracking the global path and adjusting for any
unmapped obstacles and environmental uncertainties.

In our prior work [43], we proposed a navigation
framework—the partial covering CTP (PCCTP)—to solve a
mission-planning problem in an uncertain environment. The
framework used a stochastic graph derived from coarse satel-
lite images to plan an adaptive policy that visits all reachable
target locations (Fig. 2). Stochasticity in the graph represents
possible events where a water passage between two points
is blocked due to changing water levels, strong wind, and
other unmapped obstacles. The optimal policy is computed
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offline with a best-first tree-search algorithm. We evaluated
our solution method on 1052 Canadian lakes selected from
the CanVec Series Ontario dataset [68] and showed that it
can reduce the total distance to visit all targets and return.
In our past field tests, we found that completing the global
mission fully autonomously, even for a five-node policy, was
very challenging. A total of seven manual interventions were
required for reasons other than battery replacement in the two
old field trials conducted. The failure to detect unmapped
local obstacles directly led to collisions. We observed that the
previous local planner experienced edge cases where it could
not find a valid path around local obstacles while tracking
the global plan. In addition, the local navigation system had
many intermittent errors that temporarily stopped the robot
due to false positives from obstacle detection. These past
field experiences highlight the need to improve the previous
system and conduct more field tests in new environments.
This article extends our previous work as described by
Huang et al. [43] in two ways. First, we made significant
improvements to our local planner responsible for tracking
the global path and handling any locally occurring uncer-
tainties such as obstacles. Our ASV system estimates the
waterline using a learned network and a stereo camera and
detects underwater obstacles using a mechanically scanning
sonar. We fuse both sensors into an occupancy-grid map,
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Coarse Satellite Images

Stochastic Graph

ASV Navigation

FIGURE 2. High-level overview of our navigation framework for water sampling. Given a set of user-selected target locations (red
icons), our algorithm identifies stochastic edges from coarse satellite images and plans a mission-level policy for ASV navigation.
Aerial views of two stochastic edges from real-world experiments are shown here.

facilitating a sampling-based local motion planner to compute
a pathway to track the global path while avoiding local obsta-
cles. As in our previous research, we use a timer to distinguish
stochastic edges and select appropriate policy branches based
on the traversability assessment of the stochastic edges. Sec-
ond, we have validated the overall system on three distinct
missions, two of which are new. Our field trials show that
our ASV reliably and autonomously executes precomputed
policies from the mission planner under varying operating
conditions and amid unmapped obstacles, even when the
local planner does not perfectly map the local environment or
optimally steer the ASV. We have also tested the local planner
through an ablation study to identify bottlenecks in localiza-
tion, mapping, and sensor fusion in the field. Our lessons
learned from our field tests are detailed, and we believe that
this work will serve as a beneficial reference for any future
ASYV systems developed for environmental monitoring.

Il. RELATED WORKS

Autonomous ASV navigation for environmental monitoring
requires domain knowledge from multiple fields, such as
perception, planning, and overall systems engineering. In this
section, we present a brief survey of all these related fields
and discuss the relationship to our methods and any remaining
challenges.

A. SATELLITE IMAGERY MAPPING

First, mission planning in robotics often requires a global,
high-level map of the operating environment. Remote sensing
is a popular technique to build maps and monitor changes in
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water bodies around the world because of its efficiency [42],
[95]. The JRC Global Surface Water dataset [73] maps
changes in water coverage from 1984 to 2015 at a 30 x
30 m resolution, produced using Landsat satellite imagery.
Since water has a lower reflectance in the infrared channel,
an effective method is to calculate water indices, such as
normalized difference water index (NDWI) [66] or modified
NDWI (MNDWI) [93], from two or more optical bands
(e.g., green and near infrared). However, extracting water
data using a threshold in water indices can be nontrivial
due to variations introduced by clouds, seasonal changes,
and sensor-related issues. To address this, Feyisa et al. [28]
and Li and Sheng [56] have developed techniques to select
water-extraction thresholds adaptively. Our approach aggre-
gates water indices from historical satellite images to estimate
probabilities of water coverage (see Section III-C). Overall,
we argue that it is beneficial to build stochastic models of sur-
face water bodies due to their dynamic nature and imperfect
knowledge derived from satellite images.

B. GLOBAL MISSION PLANNING

The other significant pillar of building an ASV navigation
system is mission planning. First formulated in the 1930s, the
traveling salesman problem (TSP) [54] studies how to find
the shortest path in a graph that visits every node once and
returns to the starting node. Modern TSP solvers, such as the
Google OR-tools [75], can produce high-quality approximate
solutions for graphs with about 20 nodes in a fraction of a sec-
ond. Other variants have also been studied in the optimization
community, such as the traveling repairman problem [1] that
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minimizes the total amount of time each node waits before
the repairman arrives and the vehicle routing problem [90] for
multiple vehicles. In many cases, the problem graphs are built
from real-world road networks, and the edges are assumed
to be always traversable. In CTP [72], however, edges can
be blocked with some probability. The goal is to compute
a policy that has the shortest expected path to travel from
a start node to a single goal node. CTP can also be formu-
lated as a Markov decision process [7] and solved optimally
with dynamic programming [76] or heuristic search [2]. The
robotics community has also studied ways in which the CTP
framework can be best used in path planning [26], [37]. Our
problem setting, the PCCTP, lies at the intersection of TSP
and CTP, where the goal is to visit a partial set of nodes on
a graph with stochastic edges. A similar formulation, known
as the covering CTP (CCTP) [57], presents a heuristic, online
algorithm named cyclic routing (CR) to visit every node in a
complete n-node graph with at most n — 2 stochastic edges.
A key distinction between CCTP and our setting is that CCTP
assumes all nodes are reachable, whereas, in PCCTP, the
robot may give up on unreachable nodes located behind an
untraversable edge.

In our work, the user specifies the target locations of the
planner, and the ASV can visit these predefined locations
and collect water samples for off-site analysis. Modern ASVs
can also be equipped with scientific instruments, such as
the YSI Sonde used in [44], for in situ analysis of a spatial
area. In this case, robotics path planning can also consider
scientific values in addition to efficiency, traversability, and
time constraints. Complete coverage planning first deter-
mines all areas that can be traversed and then selects either
a set motion primitive [34] or a lawnmower pattern [47] to
encompass a surveying region. The survey region can also be
decomposed into many distinct, nonoverlapping cells, and the
visitation order can be optimized with the TSP algorithm [17].
As an alternative, informative path planning adaptively plans
the robot’s path and goal based on real-time sensor data to
maximize scientific value [4]. A common approach builds a
probabilistic model of the environment online with Bayesian
models [15], [63] and then identifies the next target location
that maximizes the information gain [5], [64]. Informative
path planning can also be performed in continuous space
with a sampling-based planner, which finds the best path
in the sampled tree or roadmap that maximizes information
gain subject to a budget constraint [41]. These techniques
have also been applied specifically to ASVs [30], [49], [62],
[74], [88] and even underwater robots [36], [S0] for marine
environmental monitoring.

C. ASV SYSTEMS

In recent years, more ASV systems and algorithms for mak-
ing autonomous decisions to monitor environments have
been built. Schiaretti et al. [82] classify the autonomy
level for ASVs into ten levels based on control systems,

134

decision-making, and exception handling. Many works con-
sider the mechanical, electrical, and control subsystems of
their ASV designs [3], [27], [60]. Jeong et al. [44] optimized
the ASV design to minimize the interference on sensor read-
ings caused by the propulsion system and hull design. Dash
et al. [19] validated the use and accuracy of deploying ASVs
for water-quality modeling by comparing the data collected
from ASVs with independent sensors, and Roznere et al.
[79] confirmed that robotic water-quality measurements were
robust to sensor response time and robot motions. More
examples of vertically integrated autonomous water-quality
monitoring systems using ASVs are presented by Balbuena
et al. [6], Cao et al. [10], and Chang et al. [12]. The JetYak
platform, introduced in [51], is a small and inexpensive
ASYV built for navigating and surveying in shallow or haz-
ardous environments such as glaciers or unexplored ordnance
areas. In [69], the platform has also been retrofitted for
large spatial-scale mapping of dissolved carbon dioxide and
methane in a marine environment. Also modeled after JetYak,
Moulton et al. [67] proposed a more modular and flexible
ASYV design and discussed many valuable lessons learned to
build a fleet of ASVs and their field deployments. In con-
trast, our main contribution is a robust mission-planning
framework that is complementary to existing designs of ASV
systems.

D. LOCAL MOTION PLANNING

Path planning for navigation and obstacle avoidance is a
comprehensive field that has been extensively studied [81].
The primary purpose of the local planner in this project is
to successfully identify and follow a safe path that tracks the
global path while averting locally detected obstacles in real
time. Sampling-based motion planners, such as RRT* [46]
and BIT* [33], are favorable, owing to their probabilistically
complete nature and proven asymptotic optimality given the
right heuristics. Our local motion planner is based on [83],
a variant of the sampling-based planner designed to follow
a reference path. Using a new edge-cost metric and planning
in the curvilinear space, their proposed planner can incremen-
tally update its path to avoid new or moving obstacles without
replanning from the beginning while minimizing deviation to
the global reference path. Search-based algorithms, such as
D* lite [53] and Field D* [25], commonly used in mobile
robots and autonomous vehicles, operate on a discretized 2-D
grid and employ a heuristic to progressively locate a path
from the robot’s present location to the intended destination.
Subsequently, the optimal solution from the path planning is
submitted to a low-level controller tasked with calculating
the necessary velocities or thrusts in mobile robotics systems.
Parallel to the planning and control framework, other models,
such as direct tracking with a constrained model predictive
controller [45] and training policies for path tracking through
reinforcement learning [84], have emerged as new areas of
research in recent years.
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E. PERCEPTION

Finally, our navigation framework requires local percep-
tion modules to clarify uncertainties in our map and
avoid obstacles. Vision-based obstacle detection and water-
line segmentation have also received renewed attention in
the marine robotics community. Recent contributions have
largely focused on detecting or segmenting obstacles from
RGB images using neural networks [55], [77], [85], [89],
[94]. A substantial amount of research has been dedicated to
identifying waterlines [85], [86], [96], [98] since knowing the
whereabouts of navigable waterways can often be sufficient
for navigation. Several annotated datasets collected in differ-
ent water environments, such as inland waterways [16] and
coastal waters [8], [9], have been published by researchers.
Foundational models for image segmentation, such as ““‘seg-
ment anything” [52], have also gathered increasing attention
due to their incredible zero-shot generalization ability and
are being used in tracking [59] or remote sensing tasks [13].
Sonar is another popular sensor that measures distance and
detects objects on or under water surfaces using sound
waves. Heidarsson and Sukhatme [39] pioneered the use of
a mechanical scanning sonar for ASV obstacle detection and
avoidance and demonstrated that obstacles generated from
sonar could serve as labels for aerial images [40]. Karoui et al.
[48] focused on detecting and tracking sea-surface objects
and wakes from a forward-looking sonar image. Occupancy-
grid mapping, a classic probabilistic technique for mapping
the local environment, was used to fuse measurements from
sonars and stereo cameras on a mobile ground robot [23].
For our perception pipeline, we combine the latest advances
in computer vision, large datasets from the field, and tra-
ditional filtering techniques to make the system robust in
real-world operating conditions. Despite advances, accurate
sensor fusion of above-water stereo cameras and underwater
sonar for precise mapping on an ASV remains a formidable
research challenge.

lll. GLOBAL MISSION PLANNER

In this section, we will describe the mathematical formulation
of the planning problem and present a detailed breakdown of
our algorithm. Most of the content in this section, including
the problem formulation and the PCCTP-AO* algorithm, has
been introduced in our previous work [43].

A. PROBLEM FORMULATION

We are interested in planning on a graph representation of a
lake where parts of the water are stochastic (i.e., uncertain
traversability). Constructing such a graph using all pixels of
satellite images is impractical since images are very high-
dimensional. Thus, we extend previous works from CTP [37],
[571, [72] and distill satellite images into a high-level graph
G where some stochastic edges e may be untraversable with
probability p. The state of a stochastic edge can be disam-
biguated only when the robot traverses the edge in question.
The robot begins at the starting node s and is tasked to visit
all reachable targets J specified by the user (e.g., scientists)
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before returning to the starting node. If some target nodes are
unreachable because some stochastic edges block them from
the starting node, the robot may give up on these sampling
targets. We call this problem the PCCTP. Fig. 3 shows a
simplified graph representation of a lake with two stochastic
edges. The state of the robot is defined as a collection of
the following: a list of target nodes that it has visited, the
current node it is at, and its knowledge about the stochastic
edges. A policy sets the next node to visit, given the current
state of the robot. The objective is to find the optimal policy
s* that minimizes the expected cost to cover all reachable
targets. In the example problem (Fig. 3), the robot can either
disambiguate the left or right stochastic edge to reach the
sampling location. Formally, we define the following terms.

1) G = (V, E)is an undirected graph.

2) c¢: E — Ry is the cost function for an edge, which is
the length of the shortest waterway between two points.

3) p: E — [0, 1] is the blocking probability function.
An edge with 0 blocking probability is deterministic;
otherwise, it is stochastic.

4) k is the number of stochastic edges.

5) s € V is the start and return node.

6) J C V is the subset of target nodes to visit. There are
|J] < |V] goal nodes.

7) I = {A, T, U} is an information vector that represents
the robot’s knowledge of the status of all k stochastic
edges. A, T, and U stand for ambiguous, traversable,
and untraversable, respectively.

8) S C J is the subset of target nodes that the robot has
visited.

9) a is the current node the robot is at.

10) x = (a, S, ) is the state of the robot. a is the current
node, S is the set of visited targets, and [ is the current
information vector.

11) =* is the optimal policy that minimizes the cost
Evo~pon[@()], where ¢ is cost functional of the policy
7 and w is a possible world of stochastic graph, where
each stochastic edge is assigned a traversability state.

B. EXACTLY SOLVING PCCTP WITH AO*

We extend the AO* search algorithm [2] used in CTP to
find exact solutions to our problem. AO* is a heuristic, best-
first search algorithm that iteratively builds an AO tree to
explore the state space until the optimal solution is found.
In this section, we will first explain how to use an AO tree to
represent a PCCTP instance and then break down how to use
AO* to construct the AO tree containing the optimal policy
(e.g., Fig4).

1) AO TREE REPRESENTATION OF PCCTP

The construction of the AO tree is a mapping of all possible
actions that the robot can take and all possible disambiguation
outcomes at every stochastic edge. Following [2], an AO tree
is arooted tree T = (N, A) with two types of nodes and arcs.
A node n € N is either an or node or an and node; hence,
the node set N can be partitioned into the set of or nodes No
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FIGURE 3. (a) Toy example graph shown on the water mask generated from Sentinel-2 satellite images, with the corresponding graph
on (b) aerial view image shown on the right. The planned paths between nodes are simplified and hand-sketched on (b) for ease of
understanding. The number beside each edge of the high-level graph is the path length in kilometers, and the number in brackets is
the blocking probability, which is computed using the probability of water coverage in each pixel (represented by its shade of orange)
on the path. Note that traversable and ambiguous edges are the state before any action.

and the set of and nodes Ny4. Each arc in A represents either
an action or a disambiguation outcome and is not the same as
G’s edges (A # E). Foralln € N, afunctionc : A — R>p
assigns the cost to each arc. Also, for all n € Ny, a function
p : A — [0, 1] assigns a probability to each arc. A function
f : N — Ry is the cost-to-go function if it satisfies the
following conditions.

1) Ifn € Na,f(n) = Zn/eN(n)[p(n, ) x(f(n')+c(n, n'))].

2) It n € No.f(n) = minyenilf (7)) + c(n, n)].

3) Ifn € N is aleaf node, f(n) = 0.

Now, we can map each node and edge such that the AO
tree represents a PCCTP instance. Specifically, each node n
is assigned a label (n.a, n.S, n.I) that represents the state of
the robot. n.a is the current node, n.S is the set of visited
targets, and n./ is the information vector containing the cur-
rent knowledge of the stochastic edges. The root node r is
an or node with the label (s, @, AA, ..., A), representing the
starting state of the robot. An outgoing arc from an or node n
to its successor n’ represents an action, which can be either
visiting the remaining targets and returning to the start or
going to the endpoint of an ambiguous edge via some target
nodes along the way. An and node corresponds to the disam-
biguation event of a stochastic edge, so it has two successors
describing both possible outcomes. Each succeeding node of
an or node is either an and node or a leaf node. A leaf node
means that the robot has visited all reachable target nodes and
has returned to the start node. Each arc (n, n’) is assigned
a cost ¢, which is the length of traveling from node n.a to
node n’.a while visiting the subset of newly visited targets
n’.S\ n.S along the way. For all outgoing arcs of an and node,
the function p assigns the traversability probability for the
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stochastic edge. The cost of disambiguating that edge is its
length.

Once the complete AO tree is constructed, the optimal
policy is the collection of nodes and arcs included in the
calculation of the cost-to-go from the root of the tree, and the
optimal expected cost is f (7). For example, the optimal action
at an or node 7 is the arc (n, n) that minimizes the cost-to-go
from n, while the next action at an and node depends on the
disambiguation outcome. However, constructing the full AO
tree from scratch is not practical since the space complex-
ity is exponential with respect to the number of stochastic
edges. Instead, we use the heuristic-based AO* algorithm,
as explained in the following.

2) PCCTP-AO* ALGORITHM

Our PCCTP-AO* algorithm (Algorithms 1 and 2) is largely
based on the AO* algorithm [11], [65]. AO* utilizes an
admissible heuristic # : N — Rx( that underestimates the
cost-to-go f to build the AO tree incrementally from the root
node until the optimal policy is found. The algorithm expands
the most promising node in the current AO tree based on a
heuristic and backpropagates its parent’s cost recursively to
the root. This expansion-backpropagation process is repeated
until the AO tree includes the optimal policy.

One key difference between AO* and PCCTP-AO* is
that the reachability of a target node may depend on the
traversability of a set of critical stochastic edges connecting
the target to the root. If a target j € J is disconnected from the
current node a when all the stochastic edges from a particular
set are blocked, then this set of edges is critical. For example,
the two stochastic edges in the top-right graph of Fig. 3 are
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Algorithm 1 PCCTP-AO* Algorithm

Algorithm 2 Algorithm for AO* Expansion

Require: Graph G(V, E), cost function c, heuristic A, block-
ing probability p, target set J, k stochastic nodes, start
node s

I: na=s,nS=0,nl = {A}k

2: f(n) = h(n); n.type = OR; T.root = n

3: while T .root.status # solved do

4 n = SELECTNODE(T .root)

5 for n' € ExpAND(n, T') do

6: f) = h@)

7 if REACHABLESET(J, #n'.I) C .S then

8 n’.status = solved

9 end if

10 end for

11: BACKPROP(n, T)

12: end while

13: if T'.root.,f == inf then return No Solution

14: end if

15: return T

16: function BACKPROP(n, T') > Update the cost of the
parent of n recursively until the root. Same as in Guo
and Barfoot [37].

17: while n # T .root do

18: if n.type == OR then

19: n* = argmin,y ¢y, [f (7') + c(n, n')]

20: f) =f(n*) + c(n,n*)

21: if n* .status == solved then n.status = solved
22: end if

23: end if

24: if n.type == AND then

2s: F) = X yenlp(n, ) x (F) + cn, )]
26: if n’ .status == solved Vn’' € N (n) then

27: n.status = solved

28: end if

29: end if

30: n = n.parent

31: end while

32: end function

critical because target node 1 would be unreachable if both
edges were blocked. Thus, a simple heuristic that assumes all
ambiguous edges are traversable may overestimate the cost-
to-go if skipping unreachable targets reduces the overall cost.

Alternatively, we can construct the following relaxed prob-
lem to calculate the heuristic. If a stochastic edge is not
critical to any target, we still assume that it is traversable. Oth-
erwise, we remove the potentially unreachable target for the
robot and instead disambiguate one of the critical edges of the
removed target. The heuristic is the cost of the best plan that
covers all definitively reachable targets and disambiguates
one of the critical stochastic edges. For example, consider
computing the heuristic at starting node 0 in Fig. 5. The goal
is to visit both nodes 1 and 2 if they are reachable. Node 1
is always reachable; hence, we assume that it is traversable
in the relaxed problem. Node 2 may be unreachable, so we
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1: function SELECTNODE(n) > Find the most promising
subtree recursively until reaching a leaf node.

2 if N(n) == empty then return n
3: end if
4 best = argmin, ¢y, [f (1) + c(n, n)]
5: return SELECTNODE(best)
6: end function
7: function EXPAND(n, T') > Find the set of succeeding
nodes for node n and add them to the tree T'.
8  Nm=I[]
9: if n.type == OR then
10: JR = REACHABLESET(J, n.I)
11: q = Queue(); g.append((n.S, n.a))
12: cost = Dictionary{(n.S, n.a) : 0}
13: while g is not empty do > Search all paths that
end up at an ambiguous edge
14: n = q.pop()
15: A = {a | HASAMBIGUOUSEDGE(a) Va € V}
16: for ' € JRUA)\ n.S do
17: S’ = (n.S UPATH(n.a, d')) N JX
18: ¢ = cost[(n.S, n.a)] + c(n.a, a’)
19: if (S’, a’) not in cost or cost[(S’, a’)] > ¢’
then
20: cost[(S’,a")] = ¢ > Update the best
path and best cost
21: g.append((S’, a’))
22: end if
23: end for
24: end while
25: costf = Dictionary({ } > Find the best route to
visit all targets and return to start
26: for (S, a) € costs do
27: n = (S, a,nl); N(n).append(n’) > Add to
set of succeeding nodes
28: if S € JR then
29: costf[(S, a)] = cost[(S, a)] + c(a, s)
30: end if
31: end for
32: s d = argmingy s costf[(S, a)]
33: W= (Sf, s, nd); N(n).append(nf) > Add to set
of succeeding nodes
34: end if
35: if n.type == AND then
36: for ¢ € AMBIGUOUSEDGE(n.a) do > Expand the
disambiguation of ambiguous edges
37: n! I = UNBLOCK(n! .1, e); N(n).append(n”)
38: nY.I = BLock(nY .1, e); N(n).append(n?)
39: end for
40: end if
41: return N (n)

42: end function

remove the stochastic edge (4, 2) and ask the boat to visit
node 4 instead in the relaxed problem. This heuristic is always
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0.0

0.0 0.0

FIGURE 4. Final AO tree after running PCCTP-AO* on the example in Fig. 3. The label inside each node is the current state of the robot;
or nodes are rectangles and and nodes are ellipses. Nodes that are part of the final policy are green, extra expanded nodes are
yellow, and leaf nodes terminated early are orange. Some orange nodes that are terminated early are left out in this figure for

simplicity. This figure is reproduced from [43, Fig. 3].

Original Problem

If blocked, Target 1 is still reachable

If blocked, Target 2 becomes unreachable

O Se

Relaxed Problem

Set edge (1, 3) to traversable

Target 4 becomes a new target

FIGURE 5. Example of how we relax the original problem graph to calculate the heuristic h(n). At a high level, we construct a relaxed
problem by removing all stochastic edges and unreachable nodes from the original graph. Then, the heuristic of the original problem

is the cost of the relaxed problem and is always admissible.

admissible because the path to disambiguate a critical edge is
always a subset of the eventual policy. We can compute this
by constructing an equivalent generalized TSP [70] and solve
it with any optimal TSP solver.

Fig. 4 shows the result of applying PCCTP-AO* to the
example problem in Fig. 3. The returned policy (colored in
green nodes) tries to disambiguate the closer stochastic edge
(2, 3) to reach target node 1. Note that the AO* algorithm
stops expanding as soon as the lower bound of the cost of the
right branch exceeds that of the left branch. This guarantees
that the left branch has a lower cost and, thus, is optimal.
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C. ESTIMATING STOCHASTIC GRAPHS FROM SATELLITE
IMAGERY

We will now explain our procedure to estimate the high-level
stochastic graph from satellite images.

1) WATER MASKING

Our first step is to build a water mask of a water area across a
specific period (e.g., 30 days). We use the Sentinel-2 Level
2A dataset [21], which has provided multispectral images
at 10 x 10 m resolution since 2017. Each geographical
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FIGURE 6. Overview of the water-masking process for deriving water probabilities from satellite imagery. The procedure begins with
historical Sentinel-2 satellite images displayed on the left. Water pixels are individually identified in each image by first calculating
the NDWI water index and then using a bimodal Gaussian mixture model for classification. The results of each classification are
averaged to determine the probabilities of water, which are depicted on the right. Pixels with reduced water probabilities are colored

more yellow.

Pinch Points

(a)

FIGURE 7. Satellite images illustrating two types of stochastic edges. Water pixels are marked in blue, with their estimated boundaries
in black. (a) Several pinch points, highlighted in orange, that represent potential paths connecting water pixels from two distinct
water bodies that are otherwise far or disconnected. (b) Concept of a windy edge. Any water pixel at least 200 m from the boundary
falls within the yellow windy area. If an edge crosses the windy area, then it is classified as a windy edge.

location is revisited every five days by a satellite. We then
select all satellite images in the target spatiotemporal window
and filter out the cloudy images using the provided cloud
masks. For each image, we calculate the NDWI [66] for
every pixel using green and near-infrared bands. However,
the distribution of NDWI values varies significantly across
different images over time. Thus, we separate water from land
in each image and aggregate the indices over time. We then
fit a bimodal Gaussian mixture model on the histogram of
NDWIs to separate water pixels from nonwater ones for each
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image. We average all water masks over time to calculate the
probabilistic water mask at the target spatiotemporal window.
Each pixel on the final mask represents the probability of
water coverage on this 10 x 10 m area. If the probability
of water for a pixel is greater than 90%, we treat it as a
deterministic water pixel. We then classify pixels with a
probability lower than 90% but greater than 50% as stochastic
water pixels. Finally, we identify the boundary of all deter-
ministic water pixels. Fig. 6 shows an overview of these
steps.
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2) STOCHASTIC EDGE DETECTION: PINCH POINTS

We can now identify those stochastic water paths (i.e., narrow
straits and pinch points [26]) that are useful for navigation.
A pinch point (e.g., Fig. 7) is a sequence of stochastic water
pixels connecting two parts of topologically far (or distinct)
but metrically close water areas. Essentially, this edge is a
shortcut connecting two points on the water boundary that are
otherwise far away or disconnected. To find all such edges,
we iterate over all boundary pixels, test each shortest stochas-
tic water path to nearby boundary pixels, and include those
stochastic paths that are shortcuts. The blocking probability
of a stochastic edge is one minus the minimum water proba-
bility along the path. Since this process will produce many
similar stochastic edges around the same narrow passage,
we run DBSCAN [24] and only choose the shortest stochastic
edge within each cluster.

3) STOCHASTIC EDGE DETECTION: WINDY EDGES

The second type of stochastic edges is those with strong wind.
In practice, when an ASV travels on a path far away from
the shore, there is a higher chance of running into a strong
headwind or wave, making the path difficult to traverse.
Hence, we define a water pixel to be a windy area if it is
at least 200 m away from any points of the water boundary.
An edge is then treated as a windy edge if it crosses the windy
area at some point and we assign a small probability for the
event where the wind blocks the edge. An example of a windy
area and an associated windy edge is shown in Fig. 7(b).

4) PATH GENERATION

The next step is to construct the geotagged path and cal-
culate all edge costs in the high-level graph. The nodes in
the high-level graph are composed of all sampling targets,
endpoints of stochastic edges, and the starting node. We run
A* [38] on the deterministic water pixels to calculate the
shortest path between every pair of nodes except for the
stochastic edges found in the previous step. Since the path
generated by A* connects neighboring pixels, we smooth
them by randomized shortcutting [35]. Then, we can discard
any unnecessary stochastic edges if they do not reduce the
distance between a pair of nodes. For every stochastic edge,
we loop over all pairs of nodes and check if setting the edge
traversable would reduce the distance between the pair of
nodes. Finally, we check if each deterministic edge is a windy
edge and obtain the high-level graph used in PCCTP.

In summary, we estimate water probabilities from his-
torical satellite images with adaptive NDWI indexing and
build a stochastic graph connecting all sampling locations
and pinch points. The resulting compact graph representing
a PCCTP instance can be solved optimally with an AO*
heuristic search.

IV. SIMULATIONS
In this section, we will verify the efficacy of our PCCTP
planning framework in a large-scale simulation of mission
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planning on real lakes. The testing dataset and simulation
results from this section can be reproduced from our previous
work in [43].

A. TESTING DATASET

We evaluate our mission-planning framework on Canadian
lakes selected from the CanVec Series Ontario dataset [68].
Published by Natural Resources Canada, this dataset con-
tains geospatial data of over 1.1 million water bodies in
Ontario. Considering a practical mission length, lakes are
filtered such that their bounding boxes are 1-10 x 1-10 km.
Then, water masks of the resulting 5190 lakes are generated
using Sentinel-2 imagery across 30 days in June 2018-2022
[21]. We then detect any pinch points on the water masks and
randomly sample five different sets of target nodes on each
lake, each with a different number of targets. The starting
locations are sampled near the shore to mimic real deploy-
ment conditions.

Furthermore, we generate high-level graphs and windy
edges from the water mask. Graphs with no stochastic edges
are removed as well as any instances with more than ten
stochastic edges due to long run times. Ultimately, we evalu-
ate our algorithm on 2217 graph instances, which come from
1052 unique lakes.

B. BASELINE PLANNING ALGORITHMS

The simplest baseline is an online greedy algorithm that
always goes to the nearest unvisited target node assum-
ing that all ambiguous edges are traversable. For a graph
with k stochastic edges, we simulate all 2% possible worlds,
each with a different traversability permutation, and evaluate
our greedy actor on each one. The greedy actor recom-
putes a plan at every step and queries the simulator if
it encounters a stochastic edge to disambiguate it. Also,
it checks the reachability of every target node upon discov-
ering an untraversable edge and gives up on any unreachable
targets.

A more sophisticated baseline is the optimistic TSP
algorithm. Instead of always going to the nearest target node,
it computes the optimal tour to visit all remaining targets
assuming that all ambiguous edges are traversable. Similar
to the greedy actor, TSP recomputes a tour at every step
and may change its plan after encountering an untraversable
edge. The expected cost is computed via a weighted sum on
all 2% possible worlds. In contrast to PCCTP, both baselines
require onboard computation to update their optimistic plans,
whereas PCCTP precomputes a single optimal policy that is
executed online.

Finally, we modify the CR algorithm, originally a method
for CCTP [57], to solve PCCTP. CR precomputes a cyclic
sequence to visit all target nodes using the Christofides
algorithm [18] and tries to visit all target nodes in multiple
cycles while disambiguating stochastic edges. If a target node
turns out to be unreachable, we allow CR to skip this node in
its traversal sequence.
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FIGURE 8. Results of PCCTP and baselines in simulation. (a) Average expected regret of PCCTP and baselines. (b) Average offline run
time of PCCTP. In (a), the performance of PCCTP is compared against three baselines. Our proposed method achieves the lowest
average expected regret and outperforms the next-best baseline by 1.8 km in the extreme case. Note that the stochastic edges include
both windy edges and pinch points. In (b), only the CPU execution time for PCCTP is shown since all baselines are online methods.

C. RESULTS

Fig. 8(a) compares our algorithm against all baselines.
To measure the performance across various graphs of differ-
ent sizes, we use the average expected regret over all graphs.
The expected regret of a policy 7 for one graph G is defined
as

E, [Regret ()] = D [p ) (¢ G, w) — ¢ (27, w))]

w

where 77 is a privileged planner with knowledge of the states
of all stochastic edges, ¢ is the cost functional, and w is
a possible state of (the stochastic edges of) the graph. The
cost ¢(mr”, w), calculated using a TSP solver for each state,
serves as a lower bound to the costs incurred by the policy
¢(m, w). A low expected regret indicates that the policy w
will find efficient paths to visit all target locations and disam-
biguate the stochastic edges without prior knowledge of their
states.

PCCTP precomputes the optimal policy in about 50 s
on average in our evaluation, and there is no additional
cost online. Compared to the strongest baseline (TSP), our
algorithm saves the robot about 1% (50 m) of travel distance
on average and 15% (1.8 km) in the extreme case. Although
the advantage is not statistically significant on average, our
planner still offers advantages in many specific scenarios and
edge cases, such as those with high blocking probabilities or
long stochastic edges. The performance of PCCTP may be
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further enhanced if the estimated blocking probabilities of the
stochastic edges are refined based on historical data.

We also find that the performance gap between our algo-
rithms and baselines becomes more significant with more
windy edges. In fact, if the only type of stochastic edges in our
graph is pinch points (i.e., the number of windy edges is 0),
the performance gap is almost negligible between PCCTP and
the optimistic TSP baseline. The main reason is that most
pinch points only reduce the total trip distance by hundreds
of meters on a possible state of the graph. Pinch points are
most likely to be found either on the edges of a lake or as the
only water link connecting two water bodies. In the first case,
these pinch points are unlikely to be a big shortcut. As for the
latter case, if the pinch point is the only path connecting the
starting location to a target node, disambiguating this edge
has to be part of the policy. On the other hand, windy edges
passing through the center of a lake are often longer, and the
gap between the optimal and suboptimal policy is much more
significant.

1) COMPUTATIONAL COMPLEXITY

The worst case complexity of our optimal search algorithm is
O(lJ|! x k! x 2%, which depends on the number of stochastic
edges k and the number of target nodes |J|. The complexity is
exponential in nature because there are 2¢ possible states of
the stochastic edges, and all possible orders to visit all nodes
and disambiguate stochastic edges need to be enumerated
without a good heuristic in the worst case.
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FIGURE 9. Autonomy modules of our navigation system. Global mission planners are colored in green, sensors inputs are labeled in
blue, localization and local mapping nodes are shaded in orange, and planning and control nodes are in purple. We have also
specifically indicated the modules where we made significant improvements over our previous work [43].

In practice, however, our implementation performs effi-
ciently on standard laptop CPUs. The median run time of our
algorithm, implemented in Python, is less than 1 s, and 99%
of the instances run under 3 min. Nonetheless, approximately
0.5% of instances with eight nodes and 4.2% with ten nodes
require more than 5 min to process. We believe that the run
time can be considerably improved by rewriting in a more
efficient language, such as C++. More importantly, we argue
that this one-time cost can occur offline before deploying the
robot into a water-sampling mission. Although the worst case
run time of the AO* algorithm can increase exponentially as
the graph increases in size, the number of target locations
in each graph cannot grow infinitely for real-world water-
sampling missions. Hence, the run time of PCCTP is not a
concern for practical applications.

V. AUTONOMOUS NAVIGATION SYSTEM

This section will explain our local navigation framework in
detail and how the robot can execute the mission-level policy
and safely follow its planned trajectory.

A. STOCHASTIC EDGE DISAMBIGUATION

One crucial aspect required for fully autonomous policy exe-
cution is the capacity to disambiguate stochastic edges. Our
approach is to build a robust autonomy framework (Fig. 9)
that relies less on lower level components such as perception
and local planning to execute a policy successfully. In more

142

general terms, the mission planner precomputes the navi-
gation policies from satellite images given user-designated
sampling locations. During a mission, the robot will try to
follow the global path published by the policy. Sensor inputs
from a stereo camera and sonar scans are processed and
filtered via a local occupancy-grid mapper. The local planner
then tries to find a path in the local frame that tracks the
global plan and avoids any obstacles detected close to the
future path of the robot. When the robot is disambiguating a
stochastic edge, the policy executor will independently decide
the edge’s traversability based on the GPS location of the
robot and a timer. A stochastic edge is deemed traversable
if the robot reaches the endpoint of the prescribed path of
this edge within the established time limit. If it fails to do
so, the edge is deemed untraversable. There is no explicit
traversability check on an ambiguous stochastic edge, such
as a classifier or a local map. The timer allows us to address
complications we cannot directly sense, such as heavy pre-
vailing winds or issues with the local planner. Following this,
the executor branches into different policy cases depending
on the outcome of the disambiguation.

We made significant improvements to our local navigation
framework compared to our previous work in [43]. Similar
to before, the traversability assessment uses a timer and
GPS locations to classify an edge’s traversability without
directly relying on the result of obstacle detections or local
mapping. Instead, we made design decision changes to the
local planning architecture and improvements to individual
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(a)

FIGURE 10. Examples of challenging conditions for semantic segmentation and disparity mapping. (a) Suboptimal exposure.

(b) Reflections in still water.

modules. In the following, we will explain all the important
components and highlight any changes we made.

B. TERRAIN ASSESSMENT WITH STEREO CAMERA

An experienced human paddler or navigator can easily esti-
mate the traversability of a lake by visually distinguishing
water from untraversable terrains, obstacles, or any dynamic
objects. In our previous work [43], the video stream collected
from the stereo camera is processed geometrically by estimat-
ing the water surface from point clouds and clustering point
clouds above the water surface as obstacles. This process
was prone to stereo-matching errors due to sunlight glares
and calm water surfaces and could not detect any obstacles
on the water surface such as a shallow rock. To address
these shortcomings, we use semantic information from RGB
video streams and neural stereo disparity maps to estimate
traversable waters in front of the robot and identify obstacles.
We learn a water segmentation network and bundle it with a
temporal filter to estimate the waterline in image space and
remove outliers. The estimated waterline is then projected to
3-D using the disparity map and used to update the occupancy
grid. We provide more details in Sections V-B1 and V-B2.

1) WATER SEGMENTATION NETWORK

The most important factor in training a robust neural network
for water segmentation is a large and diverse dataset. The
characteristics of water’s appearance exhibit considerable
variation contingent on factors such as wind, reflections,
and ambient brightness, as demonstrated in Fig. 10. Yet, the
stereo camera falters in difficult lighting conditions due to the
lack of dynamic range, culminating in inadequately exposed
images and the emergence of artifacts such as shadows, lens
flare, and noises.

Our image dataset is collected from previous field tests
in Nine Mile Lake and a stormwater management pond
at the University of Toronto. However, manual annotation
of thousands of images is impractical due to its labor
and time intensity. Thus, since semantic segmentation is a
well-explored research area, we used a pretrained segment
anything model (SAM) to automate the process of creating
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ground-truth labels [52]. SAM will try to segment everything
beyond just water, outputting numerous masks of different
irrelevant items. While it is not yet capable of classifying
labeled regions, because water normally occupies the lower
half of the frame and is commonly characterized by substan-
tial area and continuity, we can apply a heuristic that heavily
favors these features, scoring regions to distinguish water
mask myyer from other masks with very high accuracy

A (m;) }

Myyater = ml?iX [m

where m; denotes the mask of class i from SAM, A computes
the total number of pixels a mask occupies, and d represents
the vertical distance, in pixels, of the masked area’s centroid
from the image’s bottom. Then, false positives within the
identified mask will be filtered out. With manual checking,
we found that this simple approach successfully labeled the
entirety of our dataset without failure. An example of this
process is shown in Fig. 11. Finally, we have a binary mask
ready to be fed into training.

Another important technique to improve the quality of
neural networks is data augmentation. Our limited training set
cannot match all the possible lighting and environmental con-
ditions that the ASV may encounter in future missions. How-
ever, we would like the trained network to be robust against
issues such as bad exposure and reflections, which signifi-
cantly affect segmentation performance. To this end, we use
color jittering and CutMix [97] during training and we find
that they greatly enhance out-of-distribution performance,
yielding superior generalization in challenging weather con-
ditions as in Fig. 10. Essentially, regions of one training image
are cut and overlaid onto another, as demonstrated in Fig. 12
to encourage the model to learn more diverse and challenging
features while also expanding our limited dataset.

Our model architecture and pretrained weights are adopted
from the embedded-compute-ready water segmentation and
refinement network (eWaSR) maritime obstacle detection
network based on the ResNet-18 backbone [89]. Our training
dataset contains 4000 images, while our testing split contains
200 images. Images in the training set are sampled uniformly
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FIGURE 11. Steps in the automatic process of generating ground-truth labels. Each distinct color overlay represents a different object
as segmented by SAM. The red region is the final ground-truth water mask after filtering SAM masks, which is used for training our

own water segmentation network.
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Random image 2

Augmented CutMix label

FIGURE 12. Example of CutMix augmented training data. A second image with a random exposure multiplier is randomly resized and
placed on top of the original image. The red region highlights the pixels that are labeled as water.

from video recordings of past experiments, while the images
of the test set are held out from challenging scenarios that
we manually identify. Fig. 13(a) displays some examples
from the test set. In addition, ten more labels are generated
randomly using CutMix during training for every original
labeled image.

Inspired by the semantic segmentation community [8],
[58], we use intersection over union (IOU, also known as
the Jaccard index) for water pixels as a metric to evaluate
the performance of the trained segmentation network. Let ny,
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be the number of water pixels with the correct predictions,
n, be the total number of pixels classified as water by the
neural network, and n, be the total number of pixels labeled
as water. The IOU can then be calculated as ng, / (ng+np—nyp).
After training, we achieve an average IOU of 0.992 on the
200-image hold-out test set. The results of the predicted
water masks after training are shown in Fig. 13(b), and our
lightweight yet powerful neural network consistently pro-
duces binary masks that accurately and consistently segment
water.

VOLUME 1, 2024

Authorized licensed use limited to: University of Technology Sydney. Downloaded on April 10,2025 at 22:29:09 UTC from IEEE Xplore. Restrictions apply.



HUANG ET AL.: FIELD TESTING OF A STOCHASTIC PLANNER FOR ASV NAVIGATION USING SATELLITE IMAGES

FIGURE 13. Example images and their predicted water mask from our test set. To better assess model capabilities, we hand-picked a
diverse set of challenging scenarios, such as reflections, bad exposure, strong glares, aquatic plants, shallow areas, and windy water
surfaces. Despite these challenges, our trained water segmentation network reliably produces high-quality water masks. (a) Original

images. (b) Predicted water masks.

2) WATERLINE ESTIMATION AND TRACKING

There are several issues associated with the direct use of
raw segmentation masks produced by a neural network. First,
the 2-D, per-pixel water labels are not inherently suited
for determining traversability in front of the robot. Sec-
ond, depth estimations derived from the stereo camera can
be severely distorted due to unfavorable conditions such
as sunlight glare or tranquil water reflections. In [43], the
geometry-based approach to estimating water planes from
point clouds derived from depth images was highly sensitive
to noise and required substantial manual adjustments. Finally,
both neural segmentation masks and depth maps can exhibit
noise and inconsistency over successive timestamps. These
issues necessitate avoiding the direct combination of segmen-
tation masks with depth maps to ascertain the existence of a
3-D water surface. Instead, we filter the segmentation masks
both spatially and temporally to approximate a waterline in
2-D image space and then project this line into 3-D space.
This projected line then forms the basis for traversability
estimates in 3-D based on stereo data.
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We approximate the 2-D waterline as a vector compris-
ing n elements, where n represents the image’s width. Each
element serves to indicate the waterline’s position for that
column. The fundamental premise here is that each column
contains a clear division between water and everything else—
such as the sky, trees, people, shoreline buildings, and other
dynamic obstacles. Thus, we can presume that only the pixels
below the waterline are navigable, while those above are
impassable. This model works well because water surfaces
are typically horizontal when viewed from the first-person
perspective of the ASV. Therefore, for the purpose of evalu-
ating the robot’s forward navigation, we can safely disregard
any water pixels higher than the defined waterline in the
image space. The position of the waterline on every col-
umn is identified by scanning upward from the column’s
bottom until a nonwater region is detected using a small
moving window. If s is the window size, the separation
point is the first pixel from the bottom such that the next
s pixels above are all nonwater. Usually, the window size
is five.
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FIGURE 14. Stereo-based waterline estimation pipeline. A waterline in the 2-D image is estimated and tracked using the water
segmentation masks. The 2-D waterline is mapped to the depth image generated by the ZED SDK and reprojected into the 3-D camera
frame based on the depth of waterline pixels and camera intrinsics. The final red points in top view represent the 3-D projection of the
estimated waterline and separate the traversable water in front of the robot from the impassable area.

Our filtering process consists of two stages: spatial filtering
based on RANSAC [29] and employing a Kalman filter sub-
sequently for temporal tracking of the waterline. We design
the spatial filtering step to smooth the waterline and remove
spatial outliers; to this end, we employ nearest neighbor inter-
polation to fit the random samples in each iteration. RANSAC
uses the squared loss function to compare the interpolated
waterline and the raw waterline. Then, we apply a linear
Kalman filter with outlier rejection to track each individual
element (column) of the waterline temporally. The Kalman
filter uses RANSAC-filtered waterline as observations and
maintains an estimated waterline as the state. Both the state
transition matrix and the observation matrix are identities.
We use a chi-squared test to discard outliers, which com-
pares the normalized innovation squared to a predetermined
threshold. Using both filters, we can eliminate noises in the
segmentation mask and mitigate any temporal oscillation or
abrupt changes in the predicted water segmentation masks.
In practice, we find that the quality of filtering is not very
sensitive to the parameters of the RANSAC and the Kalman
filter.

At the end of the filtering process, we have a smoothed
2-D waterline with one pixel per column that separates navi-
gable water from everything else. We project this line back
to the camera’s 3-D frame. As shown in Fig. 14, we use
the depth coordinate of each waterline pixel and calculate
their 3-D positions with the intrinsics of the stereo cam-
era. In the end, the 3-D waterline separates the traversable
water in front of our ASV from any obstacles originally
above the 2-D waterline. If the 2-D waterline is at the hori-
zon (i.e., it separates water and the sky), the projected 3-D
waterline will be very far away or close to infinity, meaning
that all fields of view in front of the robot are traversable
water.
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C. OBSTACLE DETECTION WITH SONAR

Sonar is commonly used as a sensor in maritime applications
for both ships and submarines. A specific type, the Blue
Robotics Ping360 mechanical scanning sonar, serves as our
primary sensing module underwater. It is mounted under-
water and operates by emitting an acoustic beam within a
forward-facing fan-shaped cone. This beam has a consistent
width (1°) and height (20°). The sonar then records the echoes
reflected by objects, with the reflection strength relating
directly to the target’s density. By measuring the return time
and factoring in the speed of sound in water, the range of
these echoes can be determined. The sonar’s transducer can
also be rotated to control the horizontal angle of the acoustic
beam. Configured to scan a 120° fan-shaped cone ahead of
the boat, the sonar can complete these scans up to a range
of 20 m in approximately 3.5 s. In addition, we also have
a Ping1D Sonar Echosounder from Blue Robotics that mea-
sures water depth. The echosounder is mounted underwater
and is bottom-facing. Each sonar scan yields a 1-D vector
that corresponds to the reflection’s intensity along the preset
range. If an obstacle impedes the path of the acoustic beam,
it prevents the beam from passing beyond the obstruction,
leading to an acoustic shadow. This phenomenon facilitates
obstacle detection via sonar scanning.

Fig. 15(a) illustrates a typical sonar scan cycle that detects
obstacles. A single sonar scan’s raw and processed data with
the resulting detected obstacle are shown in Fig. 15(b). The
process begins with the removal of noisy reflections within
a close range (<2.5 m) before smoothing the scan using a
moving average filter. Following this, all local maxima above
a specific peak threshold (50) are detected. An obstacle is
identified at the first local maxima, where the average inten-
sity post-peak falls below the shadow threshold (five). These
thresholds are tuned by hand on data collected from previous
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FIGURE 15. Sonar scan and obstacle detection result. The scan is taken from the same scene and timestamp as in Fig. 14, and the
sonar successfully detected the shoreline visible from the bird’s eye view on the left. Each sonar scan is processed individually by
detecting the first local maxima above a peak threshold on the smoothed data. Consecutive sonar scans are used to filter out noise
in the detected obstacles. (a) Sonar scan bird’s eye view. Detections are in red. (b) Single sonar scan and its detection.

field tests in Nine Mile Lake and the stormwater management
pond at the University of Toronto.

A postprocessing filter removes detections that do not
persist across a minimum of n scans (with n = 2 in our con-
figuration). This is accomplished by calculating the cosine
similarity between the current intensity vector and its pre-
decessor. If an obstacle is consistently detected n times and
the cosine similarity across these successive intensity vec-
tors exceeds 0.9, along with spatial proximity, this detected
obstacle point is included. In other words, any detections
occurring in isolation, either spatially or temporally, are
excluded. In our previous work [43], sonar was only used for
data collection purposes and not for local planning or naviga-
tion. Using scanning sonar, we can significantly improve our
ability to detect shallow or underwater obstacles even if sonar
operates at a much lower frequency than the stereo camera.

D. SENSOR FUSION WITH LOCAL OCCUPANCY GRID

Upon receiving detections from the sonar scans and the stereo
camera, they are fused into a coherent local representation
to facilitate local path planning and robot control. We utilize
the classic occupancy map [23] for our local mapping repre-
sentation. Unlike a 2-D naive cost map used in our previous
work [43], an occupancy grid maintains a local map in a
principled fashion and naturally filters and smoothes sensor
measurements temporally and spatially. The traversability
of each cell is determined by naively summing the sepa-
rately maintained log-odds ratios for sonar and camera. Our
occupancy grid is 40 x 40 m, with a cell resolution of
0.5 x 0.5 m, its center moving in sync with the robot’s
odometry updates. Waterline points, as detected by the stereo
camera, are ray-traced in 3-D back to the robot, thus lowering
the occupied probability of cells within the ray-tracing range.
Cells containing or adjacent to waterline points have their
occupied probabilities increased. However, points exceeding
a set maximum range do not affect occupied probabilities
beyond the maximum range due to the decreasing reliability
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of depth measurements with increasing range. The protocol
for updating the log-odds ratios for sonar is similar. Each
sonar scan is ray-traced to clear the occupancy grid and
marks any cells containing or close to the obstacles. The
log-odds ratios of existing cells are decayed with incoming
measurement updates, enhancing the map’s adaptability to
noisy localizations, false positives, and dynamic obstacles.
Finally, we apply a median filter to the occupancy grid to
smooth out and remove outliers.

A limitation of this system is that the scanning sonar and
the stereo camera observe different sections of the environ-
ment. The sonar may detect underwater obstacles invisible to
the camera and vice versa for surface-level objects. Fig. 16
provides an example where a shallow rock in the front right
of the ASV is detected by the sonar but missed by the stereo
camera. Without ample ground-truth data on the marine envi-
ronment, reconciling discrepancies between these sensors
proves challenging. Traversability estimation, especially in
shallow water, is also complicated due to the potential pres-
ence of underwater flora [e.g., Fig. 1(c)] or terrain. As a
solution, we opt for the simplest fusion method: directly
summing the log-odds ratio in each cell. In addition, we adjust
the occupancy-grid dilation based on the echosounder’s water
depth measurements, increasing the dilation radius when the
ASV is in shallower water. The workflow of this strategy
is shown in Fig. 16. While this strategy may only present
a coarse traversability estimate, it still reliably detects the
shoreline despite possible undetected smaller obstacles such
as lily pads or weeds. The dilation adjustment employed in
shallow water allows the ASV to navigate safely, avoiding
prevalent aquatic plants near the shore.

E. LOCAL PATH TRACKING AND CONTROL

Local path tracking is essential to ensure that the robot
adheres to the global mission plan while navigating around
obstacles on the local map. The desired controller should run
in real time and work well in obstacle-rich environments. The
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FIGURE 16. Example of sensor fusion with occupancy map before an extruding rock. Yellow line is the waterline estimated by stereo
camera, red dots indicate underwater obstacles detected by the scanning sonar, and white dots mean that the sonar did not detect an
obstacle at that angle. The rock was successfully detected in the final occupancy grid despite being missed by the stereo camera.

generated local paths must also be easy for the robot to follow.
In our previous work, the robot’s velocities were directly
controlled using the dynamic window approach (DWA) [31]
to avoid local obstacles. However, DWA only samples a
single-step velocity and may fail in cluttered environments
with obstacles or cul-de-sacs. Direct tracking of the global
path with model predictive control (MPC) is another popular
option [20], [45], but solving the optimization problem can be
costly because the obstacle avoidance constraint is nonconvex
in general. In this article, we use an alternative strategy that
uses a separate path planner to find a collision-free path that
connects to the global path and then tracks the collision-free
path with an MPC. We employ a modified version of Lateral
BIT*, as proposed by Sehn et al. [83], to serve as both
our local planner and controller. Our approach provides a
stronger guarantee as BIT* is probabilistically complete and
asymptotically optimal.

This optimal sampling-based planner, set within the
VT&R [32] framework, follows an arbitrary global path while
veering minimally around obstacles. Lateral BIT* builds
upon BIT* [33] by implementing a weighted Euclidean edge
metric in the curvilinear planning domain, with collision
checks performed against the occupancy grid in the original
Euclidean space. Samples are preseeded along the whole
global path in the curvilinear coordinates before random
sampling in a fixed-size sampling window around the robot.
The planner operates backward from a singular goal node to
the current robot location without selecting any intermediate
waypoints. Lateral BIT* is also an anytime planner and can
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be adapted for dynamic replanning. Once an initial solution
is found, an MPC tracking controller can track the solution
path. The MPC optimizes the velocity commands in a short
horizon to minimize the deviation from the planner solution
while enforcing robot kinematic models and acceleration
constraints. Adopted from [83], the MPC solves the following
least-squares problem:

) K 1 vT 1\
argmin J (T,w) = > In (Tref,ka ) Qi In (Trefka )
Tu k=1
T
+ u; RkUk

A
s.t. Test = exp ((PTuk) h) Ty, k=1,2,....K

Unin,k = Wt =< Umax,k, k=1,2,....K

where T € SE(3) are poses and u = [v w]" are velocities.
The objective function minimizes the pose error between the
reference trajectory Trerx and the predicted trajectory Ty
while keeping the control effort uy minimum. The two con-
straints are the generalized kinematic constraint and actuation
limits. We tune the cost matrices Q and R to balance the cost
between different degrees of freedom. We refer readers to
[83, Sec. V] for more details.

If a newly detected obstacle obstructs the current best
solution path, the planner will truncate its planning tree from
the obstacle to the robot, triggering a replan or rewire from the
truncated tree to the robot’s location. Because the resolution
of the satellite map is low (10 m/cell), our global path could
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FIGURE 17. Example of the planner replanning around an obstacle and avoiding it. Blue line is the global plan (see Section IlI-C for
details). Green is the current local plan planned using the local occupancy grid and tries to stay close to the global plan as much as
possible (see Section V-E). Red is the robot’s actual trajectory estimated by the GPS. The actual trajectory of the robot is jagged due

to both noisy GPS signals, wind, and decaying occupancy map.

be blocked by large rocks and terrains, especially the pinch
points. Hence, we adjust the maximum width and length
of the sampling window and tune the parameters balancing
lateral deviation and the path length. If there are no viable
paths locally within the sampling window and the planner
cannot find a solution after 1 s, the controller will stop the
ASV and stabilize it at its current location.

In practice, we cannot directly control the ASV’s linear
velocity due to the primary source of translational velocity
estimates, GPS data, being noisy and unreliable. Conse-
quently, we map the linear velocity commands to motor
thrusts through a linear relationship and close the control
loop using the MPC tracking controller. Fig. 17 illustrates an
example from the field test where our robot detected obstacles
and effectively replanned its trajectory. In the middle image,
the lateral BIT* planner finds a smooth path around the
obstacle while deviating minimally from the global path. The
estimated robot path on the right appears jagged due to sig-
nificant GPS noise (up to 1 m), wind and current influences,
and the occupancy grid’s time decay, causing the ASV’s
heading to oscillate and repeatedly rediscover the same obsta-
cle. However, the robot successfully bypasses the obstacle
without requiring manual intervention. This highlights the
robustness and adaptability of our architecture in dynamic,
noisy, and unpredictable environments.

VI. REAL-WORLD EXPERIMENTS

A. ROBOT

Our ASV platform, as depicted in Fig. 18, consists of a modi-
fied Clearpath Heron ASV equipped with a GPS, IMU, Zed2i
stereo camera, Ping360 scanning sonar, and a Pingld Sonar
Echosounder Altimeter. The stereo camera is positioned in
a forward-facing configuration and has a maximum depth
range of 35 m. The Ping360 sonar is configured to perform
a 20 m by 125° cone scan in front of the robot every 3.5 s,
achieving a resolution of 1.8°. All computational tasks are
handled by an NVIDIA Jetson AGX Xavier and the onboard
Intel Atom (E3950 @ 1.60 GHz) PC on the Heron. The
Jetson, stereo camera, and Ping360 sonar are powered by
a lithium-ion jump-starter battery with an 88-Wh capacity.
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To maintain the Jetson’s power input at 19 V, a voltage
regulator is employed, allowing the Jetson to operate in its
30-W mode. In addition, a 417.6-Wh NiMH battery pack sup-
plies power to the motors and other electronics. The batteries
can support autonomous operations for approximately 2 h.
A schematic of the electrical system is presented in Fig. 18(c).
The additional payloads carried by the ASV have a combined
mass of roughly 9 kg. Although water samplers have not been
integrated into our system, they can be easily fit in the future.
The maximum speed of our ASV is approximately 1.2 m/s.
In addition, we have a remote controller available for manual
mode operation, which can be utilized for safety purposes if
needed.

B. SYSTEM IMPLEMENTATION DETAILS

Our system’s computational load is divided into offline and
online processes (Fig. 9). Prior to the mission, we precompute
the high-level graph and optimal policy, which are loaded
onto the onboard PC. The online tasks are distributed between
two onboard computers: the Atom PC and the Jetson. An Eth-
ernet switch connects these computers, the sonar, and Heron’s
Wi-Fi Radio. The GPS and IMU are connected to the Atom
PC via USB, while the echosounder sonar and the stereo
camera are connected to the Jetson via USB. The switch
allows remote secure shell (SSH) protocol access and data
transfer between the Atom and the Jetson. We use the robot
operating system (ROS) framework [78] to implement our
autonomy modules in C4++ and Python. To synchronize time
between the Jetson and the Atom PC, we employ Chrony
for network time protocol setup. The Atom PC acts as the
ROS master, responsible for vehicle interface, localization,
updating the occupancy grids, running the local planner, and
MPC controller. The Jetson handles resource-intensive tasks
such as depth map processing, semantic segmentation, sonar
obstacle detection, and data logging. In addition, an ROS
node hosting a web visualization page is served on the Atom
PC. We also provide a Rviz visualizer to display the occu-
pancy grid and outputs of the local planner and MPC. During
the mission, the web server publishes the robot’s locations
and policy execution states in real time on a web page served
on the local network, using pre-downloaded satellite maps.
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FIGURE 18. Our Clearpath Heron ASV for monitoring water quality during a field test. The ASV is equipped with various sensors,
including GPS, IMU, underwater scanning sonar, sonar altimeter, and a stereo camera. It also contains an NVIDIA Jetson and an Atom
PC for processing the data from these sensors. (a) Top view. (b) Bottom view. (c) Electrical diagram. The locations where the sonars
are mounted are depicted in (b), while the power and communication setups are illustrated in (c).

The web visualization and Rviz can be accessed in the field
from a laptop connected to Heron’s Wi-Fi. The policy execu-
tor publishes the global plan to the local planner and starts
a timer when navigating a stochastic edge but importantly
does not incur any additional compute cost for planning.
We periodically save the status of policy execution online,
enabling easy policy reloading in case of a battery change
during testing.

We tune the update rates and resolutions of our sensing,
perception, and planning modules based on the computational
capacities of our Heron and Jetson systems. Specifically,
we aim to maintain a sustainable compute load within the
thermal and power limits. We avoid pushing our CPUs and
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GPUs to their absolute limits because doing so can lead to
system unreliability and sudden frame rate drops in the field.

Therefore, we set the ZED stereo camera and the neu-
ral depth pipeline to publish at 5 Hz with a resolution of
640 x 480. The semantic segmentation network, optimized
using NVIDIA’S TensorRT framework, runs with a latency of
less than 50 ms. Sonar obstacle detection operates at 20 Hz,
synchronized with the arrival rate of new sonar scans. The
occupancy-grid map, with a resolution of 0.5 m per cell,
updates at 10 Hz. The lateral BIT* local planner runs asyn-
chronously in a separate thread, sampling 400 points initially
and 150 points in each subsequent batch. The maximum
dimensions of the sampling window are 40 m in length and
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TABLE 1. Summary of the results of our tests for different policies, including any interventions due to algorithmic failure (excluding
battery changes). The first two rows show the results of the Lower Lake Mission from our previous work.

Mission Sensors Used

Node Visited # of Interventions

Appeared In

Lower Lake Mission Camera Only 4/5 3 [43]

Lower Lake Mission Camera Only 3/5 3 [43]

Lower Lake Mission Sonar + Camera 4/5 1 This Work

Lower Lake Mission Camera Only 4/5 0 This Work
Upper Lake Mission (Short) Sonar 4+ Camera 1/1 0 This Work
Upper Lake Mission (Short) Sonar + Camera 1/1 0 This Work
Upper Lake Mission (Short) .

(Left Edge Blocked) Sonar + Camera 1/1 0 This Work
Upper Lake Mission (Short) .

(Left Edge Blocked) Sonar + Camera 0/1 0 This Work
Upper Lake Mission (Long) Sonar + Camera 5/5 1 This Work

30 m in width. The MPC retrieves the planned path and
calculates the desired velocity at 10 Hz, using a step size of
0.1 s and a 40-step lookahead horizon.

C. TESTING SITE

Our planning algorithm was evaluated at Nine Mile Lake in
McDougall, ON, Canada. Detailed test sites and the three
executed missions can be found in Fig. 19. The Lower Lake
Mission in Fig. 19(a) repeats the field test from our prior
work [43], involving a 3.7-km mission with five sampling
points, three of which are only reachable after navigating
a stochastic edge. The stochastic edge at the bottom left
compels the ASV to maneuver through a thin opening amid
substantial rocks not discernible in the Sentinel-2 satellite
images. Besides repeating the old experiment from our prior
work, we added two additional missions in the lake’s upper
areas. Also, to assess our local mapping and planning stack’s
capabilities, an ablation mission was executed to see if the
robot could safely navigate the stochastic edge at the bottom
left of the Lower Lake Mission. The policy in Upper Lake
Mission (Short) was directly generated from the water mask
of Fig. 3. In fact, the high-level graph in Fig. 3 and policy
in Fig. 4 is a simplified toy version of our testing policy in
the Upper Lake Mission (Short). The expected length of the
policy is 1.0 km long. We observed that our NovAtel GPS
receiver’s reliability was impaired by large trees on the left
stochastic edge in Fig. 19(b). On the right stochastic edges
of the same subfigure, shallow regions, lily pads, and weeds
were numerous. Finally, we extended this short mission to
include three additional sampling sites and another stochastic
edge at the lake’s farthest point. The expected length of this
Upper Lake Mission (Long) in Fig. 19(c) is approximately
3.3 km. Despite having only five nodes, the Upper Lake
Mission (Long) is still significant due to the complexity
introduced by stochastic edges, resulting in 54 contingen-
cies and a policy tree depth of 12. This demonstrates that
even small-scale missions require our proposed approach to
generate a robust global policy, and the local planner must
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effectively manage large uncertainties in traversability to exe-
cute the mission safely.

D. RESULTS OF MISSION PLANNER

The aim of our field experiments is to test if our auton-
omy stack can successfully execute a global mission policy
correctly and fully autonomously, without any manual inter-
ventions. The results are summarized in Table 1 and we
provide the overview and analysis of our results next.

1) LOWER LAKE MISSION

We undertook the lower lake mission twice—first using both
sonar and camera and second using only the camera. The
ASYV successfully reached 4/5 targeted locations during both
trials, with the exception of the bottom-left location. This
was due to the ASV’s inability to autonomously navigate
through large rocks within the designated time frame. When
contrasted with prior experiments noted in [43], our trials
showed marked improvement, with only a single manual
intervention required due to algorithmic failure during the
first run, and none during the second. The intervention was
necessitated by the ASV’s collision with a tree trunk [the
one in Fig. 1(b)] it failed to identify, resulting in man-
ual maneuvering to remove the obstruction. In both trials,
the policy executor deemed the bottom-left stochastic edge
untraversable because the local planner did not find a path
through large rocks within the time limit. The ASV was then
safely directed back to the last sampling location and starting
location. Moreover, these trials demonstrated a significant
improvement in the stability of our navigational autonomy
compared to the same field test conducted last year. These
can be attributed to several factors. First, the inclusion of a
new semantic segmentation network for the stereo camera
allowed the ASV to navigate confidently even in conditions of
high sunlight glare or calm water. This was in contrast to the
geometric approach in our previous work, which resulted in
both numerous false positives and missing obstacles. Second,
sonar detection capabilities facilitated the identification and
avoidance of underwater rocks by the local planner. We were
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FIGURE 19. Representative examples of global plans and trajectories traversed during field experiments. All stochastic edges are
labeled in color. Green line means that the stochastic edge is found traversable, red means untraversable, and yellow means that the
edge was not explored and remained ambiguous. A battery change in (a) and a manual intervention due to large GPS noises in (c) are
also labeled. (a) Lower Lake Mission. (b) Upper Lake Mission (Short). (c) Upper Lake Mission (Long).

also able to fuse both sonar and stereo camera inputs with a of an MPC tracking controller, the reliance on GPS velocity
local occupancy-grid map. Third, through the incorporation estimates was removed. Finally, the decision to use an 88-Wh

152 VOLUME 1, 2024
Authorized licensed use limited to: University of Technology Sydney. Downloaded on April 10,2025 at 22:29:09 UTC from IEEE Xplore. Restrictions apply.




HUANG ET AL.: FIELD TESTING OF A STOCHASTIC PLANNER FOR ASV NAVIGATION USING SATELLITE IMAGES

TABLE 2. Average usage and power consumption of our
computing devices during a Lower Lake Mission.

Device Heron CPU | Jetson CPU  Jetson GPU
Usage(%) 75.2 61.6 89.3
Power(W) 9.2 19.3 (Combined)

battery on the ASV markedly improved the Jetson’s battery
life, thereby negating the need for battery changes during
each mission. In Table 2, we show that the Jetson and onboard
PC are very power-hungry during one of the testing trials.
A microcontroller inside our ASV measures the power of the
onboard PC, and we use the jetson-stats tool to log the power
of the Jetson. Although the measurement is anecdotal and
the exact power consumption can depend on other factors,
such as the state of the battery and operating temperatures, the
88-Wh battery powering the Jetson can certainly last through
a 2-h-long experiment.

2) UPPER LAKE MISSION (SHORT)

We performed four successful tests of this new policy on the
upper lake to determine if our robot could execute different
policy branches and navigate both sides of the central island,
which were visibly passable based on aerial observations.
The expected length is 1.0 km. The success criteria were
defined as either safely traversing the stochastic edges on
either side within the assigned time limit or safely returning to
the starting point without collisions. Initially, we executed the
policy twice without modifications. As depicted in Fig. 19(b),
the policy guided the ASV to navigate and return along the
left stochastic edge, which had a lower expected cost than
the right edge. For the subsequent two trials, we deliberately
triggered an early timeout to block the left edge in the policy,
forcing the ASV to navigate the right edge.

Throughout the four trials, the ASV executed the
mission-level policy fully autonomously, except for a battery
change. Navigating the left side was straightforward despite
occasional GPS signal disruptions. On the right side, the ASV
successfully reached the target area once. However, in the
second attempt, it traveled too slowly in a shallow area with
many aquatic plants [see Fig. 1(c)] and eventually reached the
time limit, rendering the right stochastic edge untraversable.
Despite this, the ASV safely returned to the starting node.
Importantly, we considered a trial a success despite the ASV
not reaching the designated target if the overall policy was
executed autonomously. No collisions occurred during any
trial.

3) UPPER LAKE MISSION (LONG)

We expanded the previous policy to a more extensive mission,
covering a larger area of Nine Mile Lake’s upper parts with
the same starting point as the shorter mission. The expected
length is significantly longer at 3.3 km. First, the boat nav-
igated the stochastic edges on the island’s left side to reach
the sample point, and it returned using the same path. Despite
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this, significantly deteriorated GPS signals were observed at
the edge’s end, preventing the mission-level policy executor
from detecting the completion of the edge traversal due to
GPS solution noise. Consequently, a manual restart of the pol-
icy executor was necessary. Thereafter, the ASV proceeded
upward to the next sample point before making a left turn to
go through a shortcut pinch point, visiting two more sample
points. Following a brief stop for battery replacement, the
ASV completed the remaining mission.

In evaluation, our local perception pipeline performed
commendably in this area despite having never previously
collected data here. In particular, the synergy of sonar obsta-
cle detection and the stereo camera’s semantic waterline
estimation showed high reliability in close-range shoreline
and obstacle detection with very minimal false positives.
Along with the previous four trials for the shorter mission,
we demonstrate that our autonomous navigation architecture
is effective not only in familiar environments but also in
previously unseen conditions.

E. ISOLATED TESTING OF LOCAL PLANNER

A main contribution of our current work is the new percep-
tion and local planner modules that can safely disambiguate
stochastic edges and navigate safely and autonomously in
obstacle and terrain-rich waterways without high-resolution
prior maps. To verify this, we tested the local planner on a
stochastic edge ten times with the exact same parameter, five
times each in either direction. Success was demonstrated by
either reaching the stochastic edge’s other endpoint within a
set time frame or returning to the starting point upon timeout
of the policy executor. Without intervention, the ASV accom-
plished this 70% of the time. However, in three instances,
it collided with or became trapped by obstacles, such as rocks
and a tree trunk.

The global path extracted from the Sentinel-2 image was
interrupted by a large rock, with only two narrow openings
between the rocks, manually traversable, as demonstrated in
Fig. 20(b). One of the narrow openings is visible from the
aerial view in Fig. 20(d). Our ASV can detect these rocks;
however, the overaggressive dilation parameter obstructs the
local planner from charting a path through the central pas-
sageway (see Fig. 21). There is another wider opening on
top of the visible narrow opening, but it is over 30 m away
from the nearest point on the global path and thus exceeds the
maximum corridor width of our local planner’s curvilinear
space.

Relying exclusively on GPS/IMU for location and a local
occupancy grid centered around the ASV poses considerable
challenges in this terrain, due to imprecision in localizing
obstacles relative to the robot and issues controlling tight
turns and precise path tracking, escalating the collision risk
in confined spaces. In order to mitigate noise and path
plan conservatively, occupancy values were decayed over
time, and substantial dilation was applied around occupied
cells. As such, the ASV would not construct and fine-
tune a consistent local map but would instead overlook
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Global Plan
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Sampling points
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FIGURE 20. Comparison of the global plan, manual traversal, and autonomous navigation through the stochastic edge. The global
plan, calculated from coarse satellite images, is blocked by a rock. In (b), the ASV was able to pass the narrow opening under manual
teleoperation. However, the ASV was unable to identify the opening in the local occupancy grid in autonomous mode (see Fig. 21),
so it searched for an opening in place until the time limit and returned to the start. (a) Autonomous attempt (forward). (b) Manual
attempt (forward). (c) Autonomous attempt (back). (d) Aerial view (hand-sketched path from global plan).

previously encountered obstacles. Consequently, the local
planner oscillates between two temporarily obstacle-free
paths in the occupancy grid, while the ASV stops and unsuc-
cessfully searches for a traversable path locally until the timer
limit is reached, as shown in Fig. 20(a) and (c).

Another key reason for the low quality of the occupancy
grid is the difficulty of fusing sonar and stereo camera mea-
surements, especially at longer ranges. Since sensor fusion
occurs solely within the occupancy map, both sensors need
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to detect an obstacle simultaneously at the same location in
the map for accurate fusion. This can be challenging due
to a variety of reasons. For instance, depth measurements
produced by the stereo camera tend to be noisier over a larger
range. Our camera is not capable of detecting underwater
obstacles detected by sonar. In addition, our system lacks
effective uncertainty measures for updating sonar and stereo
observations within the occupancy map, especially when the
two sources provide conflicting data. For example, the ASV

VOLUME 1, 2024

Authorized licensed use limited to: University of Technology Sydney. Downloaded on April 10,2025 at 22:29:09 UTC from IEEE Xplore. Restrictions apply.



HUANG ET AL.: FIELD TESTING OF A STOCHASTIC PLANNER FOR ASV NAVIGATION USING SATELLITE IMAGES

(c)

(d)

FIGURE 21. Comparison between the robot’s occupancy-grid maps and aerial image. Yellow dots are waterline estimated in 3-D. Red
dots are obstacles detected by sonar. Boat symbols are added to (b) and (d) for context. The global plan (blue line) is blocked by
rocks, so the ASV needs to detour through the narrow opening. However, the passage is blocked on the occupancy grid due to our
inaccurate detection, localization, and excessive dilation. (a) Occupancy-grid map (ASV start from south). (b) Aerial view of the scene
in (a). (c) Occupancy-grid map (ASV start from north). (d) Aerial view of the scene in (c).

simply did not detect the tree trunk. Thus, our sensor fusion
mechanism proves effective only over shorter ranges where
the sonar and camera are more likely to align. If it is possible
to extend the range of our perception modules, the ASV
could formulate more optimized navigation paths, preventing
collisions with obstacles such as rocks.

VII. LESSONS LEARNED
In this section, we outline insights garnered from our
field tests, emphasizing successful design aspects related to
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field-tested ASV navigation systems and suggesting potential
improvements for future iterations.

A. TIMER

Primarily, we found that using a timer to disambiguate
stochastic edges was simple, robust, and practical. Integration
of a timer within our ROS-based system was easy and could
accommodate unexpected hindrances such as strong winds,
making stochastic edges difficult to traverse. This allowed for
uninterrupted policy execution even when the local planner
failed to identify viable paths through a traversable stochastic
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edge. Essentially, the inclusion of a timer fostered indepen-
dence between the execution of our mission-level policy and
the selection of local planners, enabling the ASV to conduct
water-sampling missions irrespective of local planner errors.

B. LOCALIZATION

A critical limitation of our system lies in the absence of
precise GPS localization. Our system necessitates a seamless
integration of local mapping with broader satellite maps to
facilitate accurate navigation in complex scenarios, such as
those illustrated in Fig. 20. A GPS alternative, such as simul-
taneous localization and mapping (SLAM), would introduce
redundancy, bolstering navigation robustness when GPS sig-
nals become compromised due to obstructions, interferences,
or adverse weather conditions. Furthermore, minimizing
localization noise could enhance speed and steering control,
enabling the ASV to operate more swiftly and smoothly.

C. OCCUPANCY GRID

As demonstrated in Section VI-E, our occupancy-grid map
also struggles with sensor fusion—particularly over long
ranges where sonar and stereo camera measurements can
contradict. These inconsistencies necessitated the introduc-
tion of a time-decay factor and significant dilation around
obstacles. As a result, we observed a ‘““drunken sailor” phe-
nomenon, wherein the ASV constantly navigates within a
confined space without any real progress. We think that
semantic SLAM integration with the stereo camera could
ameliorate local occupancy map issues. If SLAM can provide
a locally consistent and metrically accurate map of higher
quality, the decay factor in the occupancy grid becomes
unnecessary and the planner will not oscillate. While SLAM
is impractical in open water due to the absence of station-
ary features near the robot, it becomes viable in densely
obstacle-populated scenes such as pinch points or shorelines.
Localizing the robot against semantic-based local features
could lead to more accurate localization and, furthermore,
improve obstacle-relative pose estimation and traversability
assessment. As we can store and grow the map as the robot
explores unknown areas, the planner can also work with a
static occupancy grid and avoid any oscillation. Furthermore,
we also recommend better exploration strategies to build local
maps and search for traversable paths rather than fixing the
planning domain size around the precomputed global path
from inaccurate satellite images.

As the map can be expanded when the robot explores
unknown areas, the planner can work with a fixed occupancy
grid to avoid oscillation. In addition, more effective local
map building and traversable path searching strategies might
provide better solutions than confining the planning domain
size around inaccurate satellite images’ precomputed global
path.

D. EVASIVE MANEUVERS
Our system currently lacks evasive maneuvers. Despite col-
lisions with obstacles, the robot could feasibly retreat and
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navigate back to unobstructed waters. However, our local
planner often fails to detect forward obstacles, continuing to
chart a forward path after collisions. Both the stereo cam-
era and sonar have minimum range limitations, resulting
in undetected proximate obstacles. We could introduce the
timer mechanism to prompt evasive maneuvers. For instance,
if the ASV remains stationary despite forward movement
instructions from the planner and controller, it should back
up and reset its local planner to circumnavigate the same area.
While the ASV may struggle to self-extricate from a beach or
shallow rock without human assistance, evasive maneuvers
could facilitate the avoidance of obstacles such as tree trunks
or aquatic plants.

E. SONAR

The incorporation of sonar in our system entails both advan-
tages and drawbacks. Positively, it enabled the detection and
circumvention of underwater obstacles, beyond the stereo
camera’s capabilities. Conversely, the sonar’s slow scanning
rate (3 s/scan) restricts it from being the solitary onboard
perception sensor. In addition, our heuristic-based obstacle
detection method fails to recognize minor obstacles, such as
lilypads or weeds. While the sonar effectively gauges obstacle
distances from the ASYV, it cannot determine the depth of
underwater obstacles since it scans horizontally. This depth
ambiguity complicates traversability estimation, which relies
on exact water and underwater obstacle depth knowledge.
Moreover, merging sonar with the stereo camera proves chal-
lenging due to their observing different world sections.

F SYSTEM INTEGRATION

While designing autonomy algorithms with general marine
navigation in mind, we recognize that the integration pro-
cess was tailored to our particular ASV platform and test
scenarios. The primary objective of system tuning is to opti-
mize performance metrics such as speed, accuracy, tracking
error, and reliability within the bounds of certain constraints,
including latency, computational usage, and sensor capabili-
ties. For each autonomy module, we identify key parameters
that significantly impact performance. For instance, in the
occupancy-grid map, grid resolution, smoothing and dila-
tion models, and measurement weights are crucial. Obstacle
detection with sonar is governed by the peak threshold and
the size of the smoothing window. The run time of the Lateral
BIT* planner is affected by the batch size and sampling win-
dow size. The controller’s tracking performance depends on
the controller cost terms and lookahead horizon. Notably, the
accuracy of stereo waterline estimation is not very sensitive to
the smoothing parameters but is primarily dependent on the
quality and volume of the training data.

Initially, we manually tuned these parameters using pre-
viously collected datasets or in simulation to establish a
baseline. Subsequently, we deploy all autonomy algorithms
on the real robot, testing each component individually again.
Here, we utilize ROS software tools such as Rviz and the
dynamic reconfigure package to evaluate each module’s
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performance and adjust. Often, it is necessary to reduce
the update rate and resolution of the algorithms to prevent
performance degradation due to latency or computational
constraints. We continuously record and assess our ASV’s
performance under varying conditions, refining them as
needed before conducting field experiments with a fixed set
of parameters.

Our autonomy algorithms demonstrated commendable
field performance, but many potential improvements from
a system engineering standpoint still remain. An immedi-
ate goal is enhancing our software’s efficiency to decrease
computational load and power consumption on both the
Atom PC and the Jetson. For instance, running semantic
SLAM alongside the existing stack would require additional
power and considerable software optimization to avoid strain-
ing our computers further. Aside from optimizing power
use, improvements to efficiency, reliability, and usability
could be advantageous, particularly for nontechnical users.
Our Rviz and web interface user displays contain critical
monitoring and debugging information but demand exten-
sive navigation system familiarity. Our data logging pipeline
consumes substantial storage space (about 1 GB/min), impos-
ing both storage and time cost burdens for copying and
analysis. Booting up the GPS in the field was another chal-
lenge due to prolonged wait times for adequate satellite
acquisition for autonomous navigation. In terms of future
hardware, vegetation-proof boat hulls and propellers should
be considered given the increased drag and potential dam-
age to the propeller blades from aquatic plant interference.
Furthermore, electronic connectors capable of withstanding
transportation-induced vibrations and cables that shield con-
nections from interference would enhance overall system
robustness.

G. PCCTP FORMULATION

Currently, we have found PCCTP to be a robust framework
for enabling long-term autonomous environmental monitor-
ing tasks. Our policy is designed to be resilient against
environmental uncertainties, ensuring that the robot can com-
plete its mission both safely and efficiently. In the Nine Mile
Lake experiments, the ASV detected many obstacles that
were missing or not clearly mapped in the satellite imagery.
This demonstrates the importance of using a global mission
policy when deploying autonomous robots in unfamiliar and
remote marine environments, where unforeseen obstacles
absent in the satellite images can halt the execution of a single
task plan. By characterizing only pinch points and windy
edges as stochastic edges, the problem becomes tractable to
solve optimally, effectively capturing the uncertainties visible
across different satellite images. In field tests, we found
that edges assumed to be ““traversable” were indeed always
traversable. Furthermore, we could manually inspect and
verify all possible global paths in the policy before field
deployment since we found the optimal policy offline. This
approach made it easy to understand the ASV’s high-level
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objective during our field test, particularly when radio com-
munication with the robot became unreliable.

However, we have identified several potential enhance-
ments to our problem formulation after concluding our field
tests. First, the high-level policy could still result in a dead-
lock if a “traversable edge” becomes untraversable due to
unexpected factors. This did not occur in our testing, but one
way to mitigate this is to add a small blocking probability
to these edges, However, the scalability of the algorithm may
need to be improved to efficiently plan for additional stochas-
tic edges. Second, the blocking probabilities of stochastic
edges may be correlated in a real environment. For exam-
ple, wind and water levels can simultaneously affect the
traversability of all stochastic edges, and the same aquatic
plants may proliferate across nearby stochastic edges. These
factors could be modeled by using a joint distribution with
covariance for the probabilities of all stochastic edges or by
using a Bayesian model with latent variables to represent
common environmental factors. Third, power is often a sig-
nificant constraint for fully autonomous execution, requiring
the robot to return to the base for charging periodically.
In PCCTP, we can address this by imposing a distance limit on
the planner, ensuring that the robot must return to the start or
designated charging locations. Finally, PCCTP is a one-shot
planning algorithm and does not replan online for new robot
tasks. An interesting extension for PCCTP would be for
lifelong water monitoring missions, where target locations
can be added online, and the robot can replan its policy with
its next targets as a new starting location. In this setting, the
traversability estimates may also be updated online during the
lifelong execution.

In addition to these changes to the formulation, we envi-
sion ways to expand the PCCTP to incorporate scientific
heuristics. A straightforward extension could involve using
multispectral satellite bands, such as MODIS [92], to analyze
water quality in the target area and automatically select target
locations. If the robot is equipped with an online-capable
water-quality sensor such as the YSI sonde, further oppor-
tunities arise. For instance, with a predefined set of target
locations or scanning patterns, the ASV could optimize its
policy to maximize both information gain and expected cost
under uncertain traversability conditions. Our problem for-
mulation would then need to be extended to a multiobjective
framework, employing either a weighted sum of objectives or
Pareto-based approaches [14], [80]. If the ASV is tasked with
repeatedly patrolling the same area, an online approach might
be more suitable, allowing the robot to continually update
its model of traversability and the scientific value of the
target area. However, efficiently solving these optimization
problems remains a challenge.

H. FIELD LOGISTICS

Our field logistics proved successful largely due to employing
a motorboat, facilitating rapid transportation of the robot,
personnel, and supplies to remote testing locations on the
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lake. During trials, staying in close proximity to the robot
or flying a drone for tracking was straightforward using
a motorboat. In case of forgotten crucial equipment, swift
return trips to the base camp for recovery were possible. Our
field tests, spanning three days, were completed as planned,
despite limited time and battery life.

VIIl. CONCLUSION

For a robot to be effective in real-world environments, it must
adapt to variations and uncertainties stemming from natu-
ral or human factors, despite potential mismatches between
the real world and the planning model. Therefore, a robust
mission-planning framework for long-term autonomy should
possess several key qualities: resilience to allow continuous
operation without failure, adaptability to incorporate uncer-
tainties specific to the task and environment, and efficiency in
meeting critical performance metrics such as time, through-
put, and energy cost.

With these criteria in mind, we have proposed a framework
for planning mission-level autonomous navigation policies
offline using satellite images. Our mission planner treats
the uncertainty in these images as stochastic edges and for-
mulates a solution to the PCCTP on a high-level graph.
We introduce PCCTP-AO¥*, an optimal, informed-search-
based method capable of finding a policy with the minimum
expected cost. Tested on thousands of simulated graphs
derived from real Canadian lakes, our approach demonstrates
significant reductions in travel distance—ranging from 1%
(50 m) to 15% (1.8 km).

We then developed a GPS-, vision-, and sonar-enabled
ASV navigation system to execute these preplanned policies.
We proposed a conceptually simple yet robust timer-based
approach to disambiguate stochastic edges. Local mapping
modules integrate a neurally estimated waterline from the
stereo camera with underwater obstacles detected by sonar,
while the local motion planner ensures obstacle avoid-
ance in adherence to the precomputed global path. Our
ASV navigation system has successfully executed three dif-
ferent kilometer-scale missions a total of seven times in
environments with unmapped obstacles, requiring only two
interventions in total. In addition, we achieved a 70% success
rate in an isolated test of our local planner.

Our findings highlight that while the system performs
robustly, traversability assessment and localization continue
to be bottlenecks for local mapping and motion planning.
We hope that the lessons learned from this development
process will foster future advances in long-term autonomy
algorithms and ASV environmental monitoring systems.
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