
Autonomous Robots (2024) 48:27
https://doi.org/10.1007/s10514-024-10179-z

Optimal policies for autonomous navigation in strong currents using
fast marching trees

Bernardo Martinez Rocamora Jr.1 · Guilherme A. S. Pereira1

Received: 2 December 2023 / Accepted: 24 September 2024 / Published online: 22 October 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Several applications require that unmanned vehicles, such as UAVs and AUVs, navigate environmental flows. While the flow
can improve the vehicle’s efficiency when directed towards the goal, it may also cause feasibility problems when it is against
the desired motion and is too strong to be counteracted by the vehicle. This paper proposes the flow-aware fast marching tree
algorithm (FlowFMT*) to solve the optimal motion planning problem in generic three-dimensional flows. Our method creates
either an optimal path from start to goal or, with a few modifications, a vector field-based policy that guides the vehicle from
anywhere in its workspace to the goal. The basic idea of the proposed method is to replace the original neighborhood set used
by FMT* with two sets that consider the reachability from/to each sampled position in the space. The new neighborhood sets
are computed considering the flow and the maximum speed of the vehicle. Numerical results that compare our methods with
the state-of-the-art optimal control solver illustrate the simplicity and correctness of the method.

Keywords Path planning · Motion policy · Strong currents · Strong winds · Fast marching tree · Holonomic robot

1 Introduction

In diverse applications, autonomous aerial and aquatic vehi-
cles are required to work in environments with strong natural
flows. In these applications, the flow can both assist or con-
strain the vehicle’s motion. For instance, NASA’s IceNode
buoyant robots exploit ocean currents tomove along the basal
ice-ocean interface of the Antarctic ice shelves, acquiring
long-duration melt rate measurements (Rossi et al., 2021).
In another example, balloons developed by Loon provide
internet to remote places (Nagpal & Samdani, 2017). Rather
than flying against the winds, these balloons take advantage
of the atmospheric winds to navigate without propulsion.

In an extraterrestrial application, NASA has considered
the use of aerial robots to explore the cloud layer of the Venu-
sian atmosphere (VEXAG, 2019), where recent observations
have found evidence of phosphine (Greaves et al., 2020), a

B Bernardo Martinez Rocamora Jr.
bernardo.rocamora@gmail.com

Guilherme A. S. Pereira
guilherme.pereira@mail.wvu.edu

1 Department of Mechanical, Materials and Aerospace
Engineering, Benjamin M. Statler School of Engineering and
Mineral Sciences, West Virginia University, 1306 Evansdale
Dr., Morgantown, WV 26506, USA

compound associated with microbial presence. The strong
winds of Venus, which may be as fast as 100 ms−1 (Rossi et
al., 2023), can help the vehicle to circulate the planet in five
days but can also prevent some latitudes from being reached
sooner than that (Martinez Rocamora Jr et al., 2022). To
help with these applications, the methods proposed in this
paper and illustrated in Fig. 1 compute optimal trajectories
or motion policies for vehicles navigating natural flows.

The motion planning problem under the influence of
environmental flows was approached from many different
perspectives. Alvarez et al. (2004) developed a method
using a genetic algorithm for minimum energy path plan-
ning of autonomous underwater vehicles (AUVs) in two-
and three-dimensional (2D and 3D) environments for time
and space-varying ocean currents. While the method consid-
ers complex ocean currents, it does not constrain the vehicle’s
maximum speed, assuming that the vehicle can always coun-
teract the ocean currents to reach a nominal speed. Garau et
al. (2005) applied a grid-based search (A*) method to find
minimum energy paths for AUVs in 2D ocean environments.
The velocity of the flow was considered to be always smaller
than the velocity of the vehicle relative to the current. When
the vehicle’s speed relative to the fluid is smaller than the
speed of the fluid relative to the inertial frame, we say that
the vehicle is subjected to strong winds or currents. To han-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-024-10179-z&domain=pdf
http://orcid.org/0000-0001-8048-0523
http://orcid.org/0000-0003-0739-9934

27 Page 2 of 19 Autonomous Robots (2024) 48 :27

Fig. 1 Given an environment with a time-invariant flow (→) and pro-
hibited regions (��), the Policy-FlowFMT* algorithm proposed in this
paper creates a tree (represented in the center by vertices colored by
their costs) that encodes the optimal motion policy to a specified

goal (•◦). Besides being directly used to provide optimal trajectories
to the goal (), the tree can also generate a vector field (→), which can
be applied online for robot control (· · ·)

dle incorrectness and incompleteness issues caused by the
presence of strong currents, a sliding wavefront expansion
method was proposed by Soulignac (2011). More recently,
other path planning methods based on A* for such 2D
environments were introduced by Koay and Chitre (2013);
Kularatne et al. (2018).Minimum-time andminimum-energy
cost functions were developed by Kularatne et al. (2018)
using flow-oriented coordinates, which considered the fea-
sibility problem implicitly. Most of the existing research for
AUVs has considered 2D or quasi-two-dimensional envi-
ronments, but Kulkarni and Lermusiaux (2020) proposed a
level-set solution based on exact differential equations for
time-varying and 3D scenarios. Tri-dimensional path plan-
ning for AUVs was also considered by Zhai et al. (2022),
who developed an efficient method that partitions the flow
into a set of regions with constant fields, thus transform-
ing the problem into a mixed integer optimization problem
(MIP), and uses a combination of branch-and-bound breath-
first-search and the method of evolving junctions (Li et al.,
2017) to compute the final optimal path.

The problem was also tackled in the realm of Unmanned
Aerial Vehicles (UAVs). Path planners for a gliding air-
craft under complex wind fields were studied by Langelaan
(2008); Chakrabarty and Langelaan (2013). The proposed
planner grow a tree of feasible trajectories from a discrete set
of allowable inputs andweigh the branches using a cost func-
tion that accounts for changes in total energy and distance
to the goal. A real-time environment-aware planner has been
proposed byOettershagen et al. (2017) based on a variation of

the Rapidly Exploring Random Trees star (RRT*) (Karaman
& Frazzoli, 2011) algorithm that approximates the dynamics
of the aircraft using Dubins’ Airplane (Chitsaz & LaValle,
2007) and incorporates non-uniform wind field data in its
heuristics. The method calculates the Dubins Airplane paths
considering zero wind and then deforms the paths using the
wind field. Later, it uses an iterative method to generate a
virtual goal that will lead to the actual goal position after the
path is deformed by the wind. However, this iterative method
fails for strong currents.

In a previouswork of our group,we used a sampling-based
approach, based on the RRT algorithm, to create trajec-
tories considering the strong winds of the atmosphere of
Venus (Martinez Rocamora Jr et al., 2022). We first calculate
connections without considering the wind and then integrate
the wind along the calculated paths to calculate a wind drift.
Although efficient, our method finds sub-optimal trajecto-
ries. An extension of the method to find optimal trajectories
would require rewiring the search tree, as the RRT* does,
which is difficult to perform under the influence of strong
winds. Very recently, a few research groups focused their
attention on applying the Fast Marching Tree star (FMT*)
algorithm (Janson et al., 2015), which can find optimal paths
faster and without tree rewiring. FMT* is used by Lee et
al. (2017) for energy-optimal planning of underwater glid-
ers navigating time-invariant flows. The connection between
nodes is performed by calculating the “trim states” required
to achieve straight-line motion. Bonin et al. (2023) adapted
the FMT* algorithm to time-optimal motion planning of

123

Autonomous Robots (2024) 48 :27 Page 3 of 19 27

ultralight gliders navigating in the time-invariant wind flows.
The connections between nodes are calculated using a sim-
plified optimal control problem that relies on a two-point
boundary solver. Both previous papers consider 3D scenarios
and raise reachability problems due to strong opposing flows.
However, different from the analytical procedure proposed
in the present paper, these methods numerically calculate the
reachability set by solving the vehicle’s equation of motion.

This paper presents a different sampling-based algo-
rithm based on FMT* to solve the optimal motion planning
problem for holonomic vehicles navigating strong 3D envi-
ronmental flows. Unlike previous FMT*-based methods, our
algorithm explicitly handles the feasibility problem created
by situations where the flow speed is larger than the vehi-
cle’s maximum speed relative to the flow. To achieve that, we
extended the use of reachability cones defined by Soulignac
(2011) to 3D and used them to remove unreachable vertices
in constructing the search tree.We also use reachability cones
to determine accurate minimum-time and minimum-energy
cost functions for the problem. Additionally, based on a few
modifications to the proposed path planning algorithm, we
present a method that finds a motion policy for the vehicle.
The policy is represented as a vector field that serves as a
feedback planner that optimally guides the vehicle from any
valid configuration to its goal. An illustration of the method
is shown in Fig. 1. In summary, the main contributions of this
paper are (1) a motion planner based on FMT* that accounts
for the feasibility of the trajectory in the presence of strong
flows and prohibited regions (e.g., obstacles), (2) a method
to obtainminimum-time andminimum-energy cost functions
based on the reachability condition, (3) a method that creates
a vector-field policy for optimal navigation in strong flows.
We provide the source code of our methods and, for compari-
son, the setup environment for the equivalent optimal control
solver (OCS).

The rest of this paper is organized as follows. The next sec-
tion introduces the problem we are solving in the paper. The
proposedmethods and algorithms are explained in Sect. 3 and
experiments are provided in Sect. 4. Conclusions and future
work are presented in Sect. 5.

2 Problem definition

2.1 Environment

In this paper, a single robot navigates within a fluid (most
commonly air or water) situated in a tri-dimensional (3D)
environment W ⊂ R

3. The fluid is assumed to be flowing,
and its motion is modeled as a time-independent vector field
Fc : W �→ R

3 thatmaps each position �x = [x, y, z]T ∈ W to
a flow velocity vector �c(�x) = [cx (�x), cy(�x), cz(�x)]T ∈ R

3.
The vector field Fc that represents the flow is continuous,

i.e., given any point �x0 ∈ W, there is a ball Br (�x0) = {�x ∈
W | ‖�x − �x0‖ < r} of radius r ∈ R

+ centered in �x0, where
‖Fc(�x) − Fc(�x0)‖ < ε, for every arbitrary ε ∈ R

+. Intu-
itively, if we consider two points in space that are sufficiently
close to each other, the velocities of the flow at these points
are also similar. Finally, we assume that the environmentmay
contain prohibited regions, O, which may be seen as obsta-
cles for the vehicle but not for the fluid (e.g., “no-fly zones”
for an aircraft). Therefore, the region where the vehicle can
safely navigate, or free space, is given byW f ree = W\O.

2.2 Robot

We assume a vehicle whose state space is given by X =
X × Ẋ , where X ⊆ W is the space of vehicle positions, and
Ẋ is its respective tangent space.We consider that the vehicle
is small (meter scale) compared to the environment and the
distances traveled (kilometer scale). With this assumption in
mind, we use a point with no orientation to represent the
vehicle. In practice, this point can be seen as the vehicle
itself or, for vehicleswithmore complicateddynamicmodels,
as a setpoint that could be tracked with the aid of a non-
linear controller. Therefore, the vehicle’s configuration space
is equal toW, where the vehicle is represented by its position
�x in the global reference frame. At position �x , the velocity
of the vehicle in the global reference frame is given by

�vg(�x) = �vr (�x) + �c(�x) , (1)

where �vr (�x) is the velocity of the vehicle relative to the flow
and �c(�x) is the velocity of the flow. The relative velocity is
bounded by a maximum speed vmax

r , such that ‖�vr (�x)‖ ≤
vmax
r for all �x ∈ W. We assume that the flow speed can
be greater than the vehicle’s speed relative to the flow (i.e.,
‖�c(�x)‖ ≥ vmax

r), which means that the vehicle may not be
able to counteract the flow all over the environment.

2.3 Problem statement

The motion planning problem solved in this paper is to find
the best trajectory σ ∗ in the set � of all feasible trajectories
σ(t) : [0, t f] → W f ree, parameterized by t ∈ [0, t f], that
move the vehicle from an initial configuration �xS at t = 0 to
a set of admissible goal configurations �xG ∈ Xgoal in a finite
and arbitrary time t = t f . Notice that t f is not necessarily the
same for all trajectories σ ∈ �. The cost functionC(σ) to be
minimized by our problemmaps a trajectory to a positive real
value C : � �→ R

+ and respects the constraints imposed on
the vehicle by the environment. Time and energy cost func-
tions will be minimized in this paper. Once these functions

123

27 Page 4 of 19 Autonomous Robots (2024) 48 :27

are defined, our problem is posed as:

min
σ

C(σ)

s.t. �vg(σ (t)) = �vr (σ (t)) + �c(σ (t)) ,

σ (0) = �xS ,

σ (t f) = �xG ,

σ (t) ∈ W f ree.

(2)

3 Methodology

This section presents our motion planning algorithm. First,
we introduceminimum-time andminimum-energy cost func-
tions necessary to specify our problem completely. Then,
we define neighborhood functions that are created using
reachability cones. Finally, we describe the Flow-Aware Fast
Marching Tree (FlowFMT*) algorithm and an adaptation to
compute motion policies.

3.1 Flow-aware cost functions

The problem presented in the previous section is not com-
pletely specified without a cost function. The literature uses
two main categories of cost functions, depending on the
task (Kirk, 2004). The first one specifies the minimum time
problem, which tries to guide the vehicle to its goal as fast as
possible, regardless of the energy spent. The other type spec-
ifies the minimum energy problem, which is useful when the
vehicle has a finite amount of energy available (e.g., battery)
and is required to spend this energy efficiently. Functions in
these two main categories are defined next.

3.1.1 Minimum-time cost function

In early attempts to solve the minimum-time problem, the
cost functions used were incorrect in the presence of strong
flows (i.e., ‖�c(�x)‖ ≥ ‖�vr (�x)‖ for any workspace position �x).
That meant that trajectories found using such cost functions
were not necessarily feasible. The limited reachability prob-
lem due to strong flows is illustrated in Fig. 2. For simplicity,
in this figure and along the rest of this paper the index �x is
omitted from the vehicle’s and flow’s velocity components,
i.e, �c(�x) is written as �c, �vr (�x) as �vr , and �vg(�x) as �vg .

In this paper, we provide an extension to 3D of the correct
minimum-time cost function proposed by Soulignac (2011)
to solve 2D problems (we recommend the reader to read the
discussion about cost function incorrectness in (Soulignac,
2011)). Minimum-time cost functions are usually defined
for continuous trajectories and n-waypoints discretizations,

Fig. 2 The reachable region for a vehicle moving on a constant flow is
greatly affected by the ratio between the flowvelocities and the vehicle’s
velocity relative to the flow. The circles represent iso-temporal lines
given by the position reached by the vehicle after moving towards any
direction for a fixed amount of time at a constant speed ‖�vr‖. When the
flow velocity ‖�c‖ = 0, the circles are concentric and expand outwards
with time, thus allowing the vehicle to reach the entire space (green).
With ‖�vr‖ > ‖�c‖ > 0, the circles are drifted accordingly, indicating that
the vehicle travels less when moving against the flow but still reaches
the entire space (green). When ‖�c‖ ≥ ‖�vr‖ > 0, the vehicle cannot
counteract the flow, which creates a region that cannot be reached (red)
even if the vehicle’s velocity relative to the flow is directly opposed to
the flow (Color figure online)

respectively, as:

Ct (σ) =
∫ t f

0
dt = t f and Ct (σ) ≈

n∑
k=0

�t (k) . (3)

Although these equations are correct, previous work com-
puted the travel time between two sufficiently close config-
urations (�t) with simple heuristics that accounted for the
traveled distance and an additional term that considered the
relative heading of the flow and the vehicle (Petres et al.,
2007) (thus assuming constant speed) or a ratio between the
traveled distance and the sum of the vehicle speed and the
speed of the flow opposing themovement (Garau et al., 2005;
Blackmore et al., 2010). None of these heuristics were able
to handle the strong flow condition.

When the flow speed gets larger than the maximum vehi-
cle’s speed relative to the flow, the drift caused by the flow
cannot be compensated, thus creating regions that cannot
be reached by the vehicle (Fig. 2). To create discrete func-
tions that consider this characteristic, we follow the same
procedure adopted by Soulignac (2011) but extend it to 3D.
We assume that the vehicle can change direction instan-
taneously and that the minimum time path between two
waypoints under a constant flow vector is a straight line if
the connection is feasible. We also assume that two consec-
utive waypoints are close enough so that the flow is constant
between them. Notice that these assumptions are quite realis-
tic in large environments sampledwith a very high number of
waypoints. Thus, considering two positions �x(tA) and �x(tB),
we can define a directional edge as �d = �x(tB) − �x(tA) =
[dx , dy, dz]T. The time interval between these two positions

123

Autonomous Robots (2024) 48 :27 Page 5 of 19 27

is �t = tB − tA. By integrating the model in (1) and consid-
ering the vehicle’s relative velocity �vr and flow velocity �c to
be constant along this edge we have:

�d = �vg�t = (�vr + �c)�t ⇔

⎧⎪⎨
⎪⎩

(vr ,x + cx)�t = dx
(vr ,y + cy)�t = dy
(vr ,z + cz)�t = dz .

(4)

By incorporating this equation on the inner product of the
relative velocity (�vr · �vr = v2r ,x + v2r ,y + v2r ,z), we obtain an
equation for the 3D cone shown in Fig. 3 as:

(�c · �c − �vr · �vr)�t2 − 2(�d · �c)�t + �d · �d = 0 . (5)

An in-depth discussion about the possible outcomes of this
equation is derived by Soulignac (2011). In the next few
paragraphs, we try to summarize these outcomes and connect
them to our method.

In the case that �c·�c = �vr ·�vr , (5) degenerates to a first-order
equation, and the solution is simply �t = (�d · �d)/(2(�d · �c)).
When �c · �c �= �vr · �vr , the time cost for the straight line path
between the two vertices is obtained by solving the quadratic
equation for �t as:

�t =
�d · �c ±

√
(�d · �c)2 − (�c · �c − �vr · �vr)(�d · �d)

(�c · �c − �vr · �vr) . (6)

In the case where �c · �c < �vr · �vr , the determinant ((�d ·
�c)2 − (�c · �c − �vr · �vr)(�d · �d)) is positive, but the product of
the two roots is negative, indicating that only one solution
is valid (the negative sign solution, which results in positive
�t). Thus, in this case (�c · �c < �vr · �vr), the sign of the
determinant defineswhether or not the connection is feasible.
When the computation of�t in (6) returns complex numbers,
the solution does not provide any physical meaning except
indicating that the connection is unfeasible. In fact, for some
given �vr , �c, and �d , the cone angle β, as shown in Fig. 3, is
derived from the geometry of the problem as:

cosβ =
√�c · �c − �vr · �vr

‖�c‖ . (7)

To check if a straight line connection between two points
is feasible, we can check if cos (β) ≤ cos (βmax), where
cos (βmax) is found when ‖�vr‖ = vmax

r . Thus, the complex
solutions can be ruled out a priori (without computing the
determinant in (6)) by assessing this inequality.

Interestingly, when the flow velocity is stronger than the
relative velocity (�c · �c > �vr · �vr), the two possible values for
�t are positive and valid. In this case, the lower-time solution
should be chosen for the minimum-time problem. Therefore,
considering that the path is feasible and the vehicle moves

with its maximum speed (i.e., �vr · �vr = (vmax
r)2), we obtain

the minimum-time solution between the two points for both
the 2D and 3D cases by taking the negative sign solution of
(6). Finally, to compute the total cost of a trajectory, the time
cost �t calculated using (6) is used in (3) for each segment
that composes the n piece-wise linear path traversed by the
vehicle from start to goal. Notice that the resultingminimum-
time cost function is equivalent to the one derived by Zhai
et al. (2022), both higher-dimension extensions of the cost
function proposed by Soulignac (2011).

3.1.2 Minimum-energy cost functions

Commonenergy-based cost functions for continuous anddis-
crete trajectories are, respectively, given by:

Ce(σ) =
∫ t f

0
P(t)dt and

Ce(σ) ≈
n∑

k=0

P(k)�t (k) , (8)

where P is the power required to overcome the drag. This
required power can be modeled as a polynomial of the vehi-
cle’s speed relative to the flow to represent diverse forms of
drag (e.g., viscous, pressure, or lift-induced drag):

P(t) =
n∑

i=0

αi‖�vr (t)‖i . (9)

From (9) and (8), if the power model has n > 1, we
observe that the influence of the vehicle speed is predominant
in the energy cost. Thus, to minimize the cost function, it is
necessary to minimize the vehicle’s speed along the planned
trajectory. However, this is not trivial as small vehicles’
speeds relative to the flow may yield feasibility problems,
since they reduce the reachable region as shown in Fig. 2.
Further, this type of energy-based cost function can create
situations where the resultant energy cost could be as small
aswanted as long as it is acceptable to have very long terminal
times.

Some methods like Zhai et al. (2022) or Kularatne et al.
(2018) address this issue by combining time- and energy-
based cost functions. This is achieved by adding a component
that is proportional to time (known as hotel cost), which
penalizes larger final times, to the energy-cost function
shown above. In this work, we propose an alternative to find
the energy cost for each segment of the discrete trajectories
without explicitly including such a term. For a given pair
of sampled positions (start and goal), our solution finds the
minimum speed vmin

r that guarantees that the vehicle can
still reach the goal position from the start position. To find

123

27 Page 6 of 19 Autonomous Robots (2024) 48 :27

Fig. 3 Computation of the reachable region. Given a time interval �t ,
the displacement due to the flow velocity is given by �c�t , while the dis-
placement due to the vehicle’s velocity relative to the flow is the surface
of a sphere of radius �vr�t . Reachability cones are found by considering
different values for these two parameters �vr and �t as shown in Fig. 2.
In a, the largest reachable cone is defined by βmax , which is obtained
from when ‖�vr‖ = vmax

r using (7). This case also corresponds to the
minimum time �tmin connecting the start position (•◦) to the goal posi-

tion (•◦). In b, considering ‖�vr‖ < vmax
r , the cone angle β is smaller

than βmax . In c, a cone defined by βmin is the limit case containing the
vector �d which connects the start position (•◦) to the goal (•◦) position.
The geometry of this minimum reachable cone is used to calculate a
vmin
r , which is used in our minimum-energy cost function. Notice that a
lower speed increases the time that it takes to move by �d, i.e.,�t < �t ′
(Color figure online)

the minimum speed, we use the limit situation in which the
surface of the reachability cone contains the vector �d that
connects start and goal samples. From the geometry of the
problem, illustrated by Fig. 3, we obtain:

√�c · �c − (vmin
r)2

‖�c‖ = �d · �c
‖ �d‖‖�c‖ ⇔

vmin
r =

√√√√�c · �c −
(�d · �c

‖ �d‖

)2

, (10)

which can be used with (9) and (6) to calculate P(t)(k) and
�t (k), which are then used in (8) to calculate the energy cost
for each edge of the path.

3.2 Flow-aware neighborhood sets

Sampling-based motion planners, such as the one proposed
in this paper, usually rely on the concept of neighborhood,
which is usually used to specify a set of vertices (samples)
that are candidates to be connected to the current vertices of
a graph during its construction. One of the novelties of our
method is the division of the neighborhood set into posterior
and anterior sets. The posterior neighborhood set of a given
vertex v, as shown in Fig. 4a, is the set of vertices that respect
two conditions: 1) the vertices can be reached from v (i.e.,
they are contained in the reachability cone defined by v)
and 2) the vertices are within a distance dmax from v. On
the other hand, the anterior neighborhood set of a vertex v,
as shown in Fig. 4b, is the set of vertices that respect two
conditions: 1) the reachability cone defined by these vertices
contains v and 2) the vertex v is within a distance dmax from

these vertices. The definition of these two sets allows us to
handle the reachability constraint caused by the presence of
strong currents when creating a sample-based algorithm, as
explained next.

3.3 Flow-aware fast marching tree

Using the previously defined cost functions and neighbor-
hood sets, this section presents specialized Fast Marching
Tree star algorithms (FMT*) (Janson et al., 2015) that con-
sider the reachability constraints imposed by the strong
currents. We first show the standard version of the algorithm,
forwhich the tree grows from the start position until it reaches
the goal region. In the second part of the section, we slightly
change the algorithm so it expands the tree from the goal
position to every feasible point sampled in the environment
and creates a policy.

3.3.1 Flow-aware FMT*

The Flow-Aware FMT* algorithm (FlowFMT*) proposed in
this paper is shown in Algorithm 1. Changes with respect to
the original FMT* algorithm (Janson et al., 2015) are dis-
played in red. The algorithm creates a tree graph with an
empty edge set and the vertex set defined by m random sam-
ples of the space, the start, and the goal positions (line 2).
Three sets of vertices (lines 3–4) are created: the set of unvis-
ited vertices, which is initialized with all vertices but the start
position; the open set, which initially has the start position;
and the closed set, which is empty at the beginning. Then,
two structures (N A and N P) that save two sets of neighbors
(see Sect. 3.2) for each vertex are initialized (lines 6–9).

123

Autonomous Robots (2024) 48 :27 Page 7 of 19 27

Fig. 4 Two types of neighborhood sets are defined for our method,
substituting the standard Near() function used by the original FMT*
algorithm. Given a vertex v, we define a the posterior neighborhood,
with vertices that can be reached from v, and b the anterior neighbor-
hood, with vertices that can reach the vertex v

The algorithm executes until no vertices are found on the
open set or a path to the goal is found (lines 10 and 29). At
each iteration, the minimum cost vertex of the open set is
computed (line 30), and the posterior neighborhood of this
vertex is calculated or retrieved (lines 31–32). This set is
intersected with the set of unvisited vertices (line 12), and
for each of the vertices x in the intersection, a search for
a locally optimal one-step connection is performed by test-
ing connections from all the vertices y in the intersection of
the anterior neighborhood and the open set to x (lines 13–
17). Up to this point, no collision checks are done. Once the
locally-optimal one-step connection is found, it is tested for
collision (line 18). If no collisions are detected, the edge is
added to the tree (line 19). The newly added vertex is added

Algorithm 1 Flow-Aware FMT* Algorithm
1: function σ = FlowFMT*(xS , xG , Vpool)
2: V ← xS ∪ Vpool ∪ xG , E ← ∅

3: Vunvisi ted ← V \{xS }, Vopen ← xS
4: Vclosed ← ∅

5: z ← xS
6: N P

z ← Post.Nbhd(∅, V \{z}, z, rn)

7: N P ← Save(∅, N P
z , z)

8: N A
z ← Ant.Nbhd(∅, V \{z}, z, rn)

9: N A ← Save(∅, N A
z , z)

10: while z �= xG do
11: Vopen,new ← ∅

12: Xnear = N P
z ∩ Vunvisi ted

13: for x ∈ Xnear do
14: N A

x ← Ant.Nbhd(N A, V \{x}, x, rn)

15: N A ← Save(N A, N A
x , x)

16: Ynear ← N A
x ∩ Vopen

17: ymin ← argminy∈Yn.
{c(y) + Cost(y, x)}

18: if CollisionFree(ymin , x) then
19: E ← E ∪ {(ymin , x)}
20: Vopen,new ← Vopen,new ∪ {x}
21: Vunvisi ted ← Vunvisi ted ∩ {x}
22: c(x) = c(ymin) + Cost(ymin , x)
23: end if
24: end for
25: Vopen ← (Vopen ∪ Vopen,new)\{z}
26: Vclosed ← Vclosed ∪ {z}
27: if Vopen = ∅ then
28: return ∅

29: end if
30: z ← argminy∈Vopen {c(y)}
31: N P

z ← Post.Nbhd(N P , V \{z}, z, rn)

32: N P ← Save(N P , N P
z , z)

33: end while
34: return GetPath(xG , T (Vopen ∪ Vclosed , E))

35: end function

to the open set and removed from the unvisited set (lines
20–21). After looping through all vertices in the posterior
neighborhood, the query vertex is removed from the open set
and added to the closed set (lines 25–26). The neighborhood
sets are calculated using the AnteriorNeighborhood (short-
ened to Ant.Nbhd) and PosteriorNeighborhood (shortened to
Post.Nbhd) functions as shown in Algorithm 2. The differ-
ence between the two functions is given by the definition of
�d (line 11).

3.3.2 Computing a policy using flow-aware FMT*

More useful than simply obtaining a path from the start to the
goal, a policy defines paths from all positions in the space
to the goal. A policy can be represented by a vector field,
which can be used as a feedback system to compensate for
disturbances (LaValle, 2006). Since the FMT* method is a
graph-based level-setmethod that computes increasing levels
of the cost function as the tree marches to cover the environ-
ment, it can be easily used to compute a policy. We then
propose a few modifications to the Flow-Aware FMT* algo-
rithm (Algorithm 1) to make this possible: (i) the root of
the tree (lines 2–5) is set to the goal position; (ii) the ante-
rior (lines 14–15) and posterior (lines 31–32) neighborhood
sets are swapped; (iii) the order of the vertices on the cost
function and collision checking functions (lines 18–19, and

123

27 Page 8 of 19 Autonomous Robots (2024) 48 :27

Algorithm 2 Anterior/Posterior Neighborhood Set Compu-
tation Functions
1: function Nq = Ant./Post.Nbhd(N , V , q, rn)
2: if ∃N (q) then
3: return N (q)
4: end if
5: Nq ← ∅

6: �q ← GetPosition(q)
7: �c ← Fc(�q)

8: cos (βmax) ←
√

�c · �c − (vmax
r)2/‖�c‖

9: for v ∈ V do
10: �x ← GetPosition(v)
11: �d ← �q − �x (Ant.) or �d ← �x − �q (Post.)
12: cosβ ← (�d · �c)/(‖ �d‖‖�c‖)
13: if ‖ �d‖ < rn then
14: if ‖�c‖ ≥ vmax

r then
15: if cosβ ≥ cos (βmax) then
16: Nq ← Nq ∪ v
17: end if
18: else
19: Nq ← Nq ∪ v
20: end if
21: end if
22: end for
23: return Nq
24: end function

22) are inverted; (iv) the stopping criteria (lines 10 and 27)
is changed to only interrupt the procedure if the open set
becomes empty.

The outcome of these modifications is shown in Algo-
rithm 3. Changes with respect to the standard Flow-Aware
FMT* algorithm (Algorithm 1) are displayed in red. Notice
that Algorithm 3 builds a tree from the goal position but
still considers that the direction of motion of the vehicle is
towards the goal. The dynamic programming procedure (line
17) considers only valid connections given the sets defined
in Sect. 3.2.

A policy is encoded in the resulting tree. Once this tree is
found, the vehicle’s velocity in the global reference frame �vg
can be calculated using a multivariate interpolation around
each position �x in the continuous space. We propose using
an inverse distance weighting interpolation of the vertices of
the tree that are close to �x to extract the policy vector field
as:

�vr (�x) = �vg(�x) − �c(�x) =
∑k

i=0 wi (�x) �vg,i∑k
i=0 wi (�x)

− �c(�x) , (11)

where �vg,i (0 ≤ i ≤ k) are the vehicle’s velocities in the
global reference frame at the k vertices vi of the tree that
are within a distance r from �x (i.e., vi ∈ V ∩ Br (�x)). The
process is illustrated by Fig. 5. The weight function is given
by wi (�x) = 1/(�x − �xi)p where p is a parameter (commonly,
p = 2). Notice that we assume that �x is located in a region
from which the goal can be reached.We do not include any
further development in this paper, but simple heuristics, like
counting the number of vertices of the tree in the ball Br (�x)
can help identify whether �x belongs to a feasible region or
not. From (1) the vehicle’s velocity relative to the flow can

Algorithm 3 Flow-Aware FMT*Algorithm (PolicyVersion)
1: function T = Policy- FlowFMT*(xG , Vpool)
2: V ← xG ∪ Vpool , E ← ∅

3: Vunvisi ted ← V \{xG }, Vopen ← xG
4: Vclosed ← ∅

5: z ← xG
6: N P

z ← Post.Nbhd.(∅, V \{z}, z, rn)

7: N P ← Save(N P , N P
z , z)

8: N A
z ← Ant.Nbhd.(∅, V \{z}, z, rn)

9: N A ← Save(N A, N A
z , z)

10: while Vopen �= ∅ do
11: Vopen,new ← ∅

12: Xnear = Nz ∩ Vunvisi ted
13: for x ∈ Xnear do
14: N P

x ← Post.Nbhd(N P , V \{x}, x, rn)

15: N P ← Save(N P , N P
x , x)

16: Ynear ← N P
x ∩ Vopen

17: ymin ← argminy∈Yn.
{c(y) + Cost(x, y)}

18: if CollisionFree(ymin , x) then
19: E ← E ∪ {(ymin , x)}
20: Vopen,new ← Vopen,new ∪ {x}
21: Vunvisi ted ← Vunvisi ted ∩ {x}
22: c(x) = c(ymin) + Cost(x, ymin)

23: end if
24: end for
25: Vopen ← (Vopen ∪ Vopen,new)\{z}
26: Vclosed ← Vclosed ∪ {z}
27: z ← argminy∈Vopen {c(y)}
28: N A

z ← Ant.Nbhd(N A, V \{z}, z, rn)

29: N A ← Save(N A, N A
z , z)

30: end while
31: return T (Vopen ∪ Vclosed , E)

32: end function

Fig. 5 Policy encoded by the tree T (V , E) resulting fromAlgorithm 3.
The global velocity �vg,i at the vertices i of the tree around the position
of the robot �x are combined to find the target global velocity �vg . By
subtracting the local flow velocity �c, the robot’s velocity �vr , which is
used to control the robot, can be retrieved as shown in (11)

be computed by subtracting the interpolated value from the
flow velocity at this point.

3.3.3 Analysis

In this section, we discuss the computational complexity, the
optimality, and the completeness of FlowFMT*. Notice that
FlowFMT* is very similar to the original version of FMT*, as
can observed by the highlighted lines in algorithms 1 and 3.
The main difference is that, instead of a single spherical

123

Autonomous Robots (2024) 48 :27 Page 9 of 19 27

neighborhood set of radius rn for each sample, FlowFMT*
creates two spherical-conic neighborhood sets (intersection
of a wind-driven elliptical cone and a sphere of radius rn) for
each sample. With this modification, we reduce the number
of calls of functions Cost() and CollisionFree(), which
highly improves the computation time of the algorithm, but
does not change its computational complexity when com-
pared to the original FMT*. Therefore, for n samples, the
computational complexity of FlowFMT* is still O(n log(n))

in expectation, as discussed by Janson et al. (2015). To
achieve this computational complexity, Algorithm 2 which
finds the neighborhood sets for each query node should be
implemented using KDTrees, so that the filtering by rn hap-
pens in O(log(n)).

The total number of samples in the two neighborhood
sets of FlowFMT* can be larger or smaller than the num-
ber of samples of the spherical set of FMT*, depending
on the relative speed of the wind. This, however, does not
change the space complexity of the method, which also
remains O(n log(n)). The multiplicative constant can make
FlowFMT* to use more memory for low-velocity flows and
less memory for high-velocity flows.

For the original spherical neighborhood set with radius

rn =
(

λ log(n)

n

)1/d

, (12)

where λ is a positive constant and d is the space dimen-
sionality, FMT* is proven to be asymptotically optimal
(and therefore probabilistically complete) (Janson et al.,
2015). The adoption of spherical-conic neighborhood sets
by FlowFMT* does not change this characteristic because,
in essence, the use of these sets is equivalent to the use of
the original spherical set and a cost function Cost(x, y) that
would return infinite when sample y is unreachable from
sample x . Thus, the idea behind FlowFMT*, which does
not change the asymptotic optimality proof of FMT*, is to
avoid several computations of the cost function (and also of
CollisionFree()) by pre-selecting the neighboring samples
that would not return an infinite cost (reachable neighbors).
Hence, FlowFMT* inherits the characteristics of FMT* and
remains asymptotically optimal.

The idea of reachable sets changes the overall behavior
of FMT* in a few situations. Depending on the flow con-
figurations, placement of prohibited regions (obstacles), and
also on the maximum speed of the vehicle, there may exist
a set of samples in the environment from where the vehicle
cannot reach the goal. If the initial configuration belongs to
this set, the motion planning problem is infeasible. In most
cases, this happens when the vehicle is not able to counteract
the flow speeds as it tries to avoid the prohibited regions and
environment limits. Situations like this will be exemplified
in the experiments of the next section. Although the pres-

ence of a set of samples that leads to infeasible problems
does not change the optimality and completeness of either
FMT* or FlowFMT*, it makes FlowFMT* more interesting.
FMT* would find an element x of this set when the cost to
all neighbors in the spherical set is infinite. FMT* would
then connect x to one of its neighbors and at the end would
return a path of infinity cost. On the other hand, FlowFMT*
would explicitly define empty neighborhood sets for each
sample that cannot reach the goal. This is a major advantage
of FlowFMT*, which would immediately (without comput-
ing any cost or performing collision checks) return an empty
path, instead of a path that cannot be physically followed by
the vehicle, as returned by FMT*. Since FlowFMT* returns
a path when the initial position can reach the goal and returns
an empty path when this is not possible, FlowFMT* is prob-
abilistically complete (a condition necessary for asymptotic
optimality), even when it faces an infeasible motion planning
problem. Notice that, with small modifications, FMT* could
have the same behavior but at the cost of trying to connect
samples in the infeasible region with all of their neighbors
before detecting that the problem is actually infeasible.

The Policy-FlowFMT* algorithm has the same com-
plexity as FlowFMT* since the differences between the
algorithms are only related to the in-line ordering of some of
its computations. We can then analyze the post-processing
step given by (11). After the search tree is computed offline,
this equation is supposed to be used at runtime. It is assumed
that the tree resulting from Algorithm 3 would be stored in
memory and the robot would only need to query for the ver-
tices that are close to it. A simple search using KDTrees,
which is O(log(n)), can be used to assess the distance
between the current robot position and the vertices of the
tree and calculate the policy at O(1). Therefore, the runtime
complexity of Policy-FlowFMT* is O(log(n)).

4 Experimental results

In this section, the performance of the proposed planner is
evaluated in 2D and 3D scenarios, with and without pro-
hibited regions. The resulting paths are always compared
to the paths obtained by a state-of-the-art optimal control
solver (OCS), the Imperial College London Optimal Con-
trol Software (ICLOCS2) (Nie et al., 2018). Additionally,
by testing our method in environments previously published
in the literature, we could also compare FlowFMT* with a
Level Set Method (implemented by Zhai et al. (2022)), the
Evolving Junction method (Zhai et al., 2022), true optimal
solutions (Subramani et al., 2018), and a competitive grid-
based approach (Kularatne et al., 2018). All the simulations
were performed using an Intel® Core™ i9-9900K CPU at
3.6GHz, with 16 cores and 32GB of RAM.

123

27 Page 10 of 19 Autonomous Robots (2024) 48 :27

Fig. 6 Adaptive Neighborhood Radius for the FlowFMT*. The neigh-
borhood size is decreased when the streamlines curve to improve on the
assumption that the flow velocity is constant inside of the neighborhood

4.1 Canonical jet flow environment

The crossing of canonical jet flows are a set of illustra-
tive problems described in prior works like Subramani et al.
(2018) and Zhai et al. (2022), that bring possibilities to vali-
date FlowFMT*ondifferent aspects.One specific problemof
this validation scenario is that it has discontinuities in the flow
speeds, which contradicts our assumption that, in the limit,
as the sample density gets higher, the flow speed between
two neighboring samples tends to be constant. Although
increasing the number of samples minimizes the effect of
the discontinuity on the entire path, in our simulations we
also included an adaptive neighborhood radius according to
a vector-similarity metric based on the difference between
the flow velocities in the start and goal vertices (�cparent and
�cchild). The adaptive neighborhood radius is given by

r∗
n = rn

(
1 − ‖�cparent − �cchild‖

2cmax

)
, (13)

where rn is the original radius proposed for the FlowFMT* as
shown in Equation (12). Figure6 illustrates how this process
works. Notice that r∗

n tends to rn as our assumption of con-
stant flow within the neighborhood region is better satisfied.
If discontinuities or large gradients are present, the smaller
radiuswill reduce the chances of connecting samples far from
each other.

4.1.1 Two-dimensional jet

In this subsection we consider a vehicle that can move at
a maximum speed vmax

r = 10.0ms−1 relative to the flow.
We limit the environment to a box of side 100m, i.e., W =
[0, 100] × [0, 100] (the dimensional unit ‘meters’ is omitted
in the rest of this section for simplicity). Tomatch the scenario
proposed by Subramani et al. (2018), we plan paths from

the start position �xstart = [20.0, 20.0]T to the goal position
�xgoal = [80.0, 80.0]T. The flow environment is modeled as

�c(x, y) =
{

[20.0, 0.0]T if y ≥ 40 and y ≤ 60 ,

[0.0, 0.0]T otherwise .
(14)

FlowFMT* is compared to the optimal results found using
themethodology explainedbySubramani et al. (2018),where
a simple gradient-based numerical method is used to find the
optimal solution to the jet crossing problem. The optimiza-
tion is solved using Matlab (fmincon function). In Fig. 7, we
show the optimal solution obtained numerically and solutions
found using FlowFMT* for different number of samples.
The cost using 25,600, 102,400, and 409,600 samples, were,
respectively, Ct (σ) = 6.2671s, Ct (σ) = 6.2608s, and
Ct (σ) = 6.2569s. The cost of the numerical solution was
Ct (σ) = 6.2523s. Notice that the discontinuity in the flow
field causes errors in FlowFMT*’s solution (a small shift
compared to the optimal solution), but as the number of
samples increases, and with the inclusion of the adaptive
neighborhood radius this impact is significantly decreased.

Fig. 8 showsa solution computedusingPolicy-FlowFMT*
with 102,400 samples. The tree starting at the goal position
is shown in Fig 8a and the resultant vector field is shown in
Fig 8b. Similar to the previous result, the computed trajectory
is very close to the optimal one. Also, notice that, differently
from other methods, our vector field explicitly indicates a
region of the space from where the vehicle cannot reach the
goal (no solution).

4.1.2 Three-dimensional jet

In this subsection, we consider a vehicle that can move at a
maximum speed vmax

r = 3.0ms−1 relative to the flow. We
set the environment limits to the box W = [−10, 10] ×
[−10, 10]×[0, 20] (the dimensional unit ‘meters’ is omitted
in the rest of this section for simplicity). To match what is
found in the literature, in this section, we plan paths from
the start position �xstart = [0.0, 0.0]T to the goal position
�xgoal = [0.0, 20.0]T. The flow environment is modeled as

�c(x, y, z) =

⎧⎪⎨
⎪⎩

[0.5, 0.0, 0.0]T if z ≥ 0 and z ≤ 10 ,

[2.0, 1.0, 0.0]T if z ≥ 10 and z ≤ 15 ,

[0.0, 0.0, 0.0]T otherwise .

(15)

FlowFMT* is compared to the optimal control solver
ICLOCS2 (OCS), the Evolving Junction method (EJ) (Zhai
et al., 2022), and the Level Set method (LS) when com-
puting minimal-time paths. It is important to mention that
LS is known to compute the shortest-time path over time-
varying flows at the cost of longer computational times. On

123

Autonomous Robots (2024) 48 :27 Page 11 of 19 27

Fig. 7 Motion planning for a vehicle crossing a 2D jet flow using
FlowFMT*. The robot moves from the start position (•◦) to the goal
(•◦). We show the regions where the speed of the flow is greater (�) and
smaller (�) than the maximum speed of the vehicle relative to the flow.

The edges of the tree are colored based on the cost of the children’s
vertices. The numerical optimal solution is shown in black (). The
solution found with the adapted FlowFMT* is shown in red () for a
25,600, b 102,400, and c 409,600 samples (Color figure online)

Fig. 8 Motionplanning for a vehicle crossing a2D jet flowusingPolicy-
FlowFMT*. a Policy-FlowFMT* tree with the root at the goal position
(•◦) for a two-dimensional jet flow. bVector field computed with Policy-
FlowFMT*. The figures show the following trajectories from start (•◦)
to the goal (•◦): the optimal trajectory computed numerically (), the

trajectory from the tree computed by PolicyFlow* (), and the trajec-
tory computed by integrating the vector field (· · ·). From the regions
where the field is not computed, the robot cannot reach the goal (no
solution)

the other hand, EJ was proposed as an efficient solution that
avoids errors induced by the discretization of the environ-
ment. Because it works on partitions of the flow, it explicitly
handles discontinuous flows, as is the case of the environment
used in this section.

Table 1 shows the comparisonof themethods.Thenumeri-
cal results for EJ andLScamedirectly fromZhai et al. (2022).
Besides the minimum-time cost, Ct , found by each method,

Table 1 also shows the parameters of each path found, where
angles θi and γi are elevation and azimuth angles of the path
segments crossing the horizontal planes in z = 10 and z = 15
as defined by Zhai et al. (2022). Notice that all paths are very
similar, showing that FlowFMT* converges to the optimal
path, even in an environment with discontinuous flow. Fig-
ure 9 compares the trajectory found by FlowFMT* using
204,800 samples with trajectories found by OCS. The trajec-

123

27 Page 12 of 19 Autonomous Robots (2024) 48 :27

Table 1 Comparison of Evolving Junction (EJ), Level Set (LS),
ICLOCS2 (OCS), and FlowFMT* methods for the 3D jet flow envi-
ronment. The segment angles for the FlowFMT* were estimated by
calculating elevation and azimuth angles to the interpolated path cross-
ing the horizontal planes in z = 10 and z = 15

EJ LS OCS FlowFMT*

θ1 82.7924 83.5659 83.0881 83.7492

θ2 62.0255 63.3118 63.4041 64.8360

θ3 73.7397 73.80277 74.7784 75.3569

γ1 −136.0775 −135.6592 −134.8846 −133.9709

γ2 30.2293 30.2407 30.9735 32.8730

γ3 −161.6199 −161.2246 −161.6005 −158.1282

Ct 6.9096 6.9826 6.9092 6.9090

tories foundwith EJ and LSwere omitted from the plot due to
their similarity to the other two trajectories. Since we did not
implement the Evolving Junction (EJ) method, a time com-
parison between the methods cannot be made. Despite this,
although EJ could be the best choice for environments with
discontinuous and easy-to-segment flows, we believe that
FlowFMT* would be a better choice for general flow envi-
ronments, where the field cannot be easily partitioned into
piece-wise constant subfields. The double-gyre flow envi-
ronment, exploited in the next subsection, is an example of
such an environment.

4.2 Double-gyre flow environment

In this subsection, we consider a vehicle that can move at
a maximum speed vmax

r = 0.05ms−1 relative to the flow.
The environment is modeled using a three-dimensional (3D)
version of double-gyre flow,which is usually used to evaluate
motion planning on flows (see (Kularatne et al., 2018; Lee et
al., 2017)), as:

�c(x, y, z) =

⎧⎪⎨
⎪⎩

−π A sin(πx/s) cos(π y/s) cos(π z/s)

π A cos(πx/s) sin(π y/s) cos(π z/s)

π A sin(π z/s) ,

(16)

where A is the amplitude scaling factor that controls themax-
imum flow speed (max�x∈W ‖�c(�x)‖), and s determines the
characteristic length of the gyres. As suggested by Kularatne
et al. (2018), we choose A = 0.02 so that the maximum flow
speed is 0.0625ms−1,which is greater than the vehicle’smax-
imum speed relative to the flow. We limit the environment
to a box of side 2m, i.e., W = [0, 2] × [0, 2] × [0, 2] (the
dimensional unit ‘meters’ is omitted in the rest of this paper
for simplicity), and choose s = 1. To obtain the standard two-

dimensional (2D) double-gyre flow, the slice where z = 0 is
used.

4.2.1 Two-dimensional gyre

In a 2D environment (z = 0 in (16)), FlowFMT* is used to
find paths from the start position �xstart = [0.1, 0.1]T to a few
different goal positions Xgoal = {[0.1, 1.9]T, [1.5, 1.0]T,
[1.9, 0.9]T, [1.9, 1.1]T, [1.9, 1.9]T}, as shown in Fig. 10. This
figure shows the optimal-time paths for both minimum-time
and minimum-energy cost functions and the resultant trees
used to obtain these paths. The edges of the tree were col-
ored by the cost of the children’s vertices. The solution from
the equivalent optimal control problem is shown for com-
parison. The general topology of the path for both methods
is the same. Obtaining the best path from the OCS requires
some tuning and an appropriate initial guess. Without these
two requirements, the OCS can either take too long to con-
verge (several minutes) or converge to a local optimum. We
noticed that as we increased the number of samples, the path
generated by FlowFMT* approached the best path obtained
by the OCS without the extra work.

The absolute values of the minimum-time cost obtained
by FlowFMT* and the OCS solution agree with the results
obtained by Kularatne et al. (2018), even though the piece-
wise time cost between vertices was obtained using different
formulations (ours is based on (Soulignac, 2011)). For com-
parison, considering the path from [0.1, 0.1]T to [1.9, 0.9]T ,
the OCS solution obtained by Kularatne et al. (2018) pre-
sented a minimum-time cost of Ct (σ) = 32.87s while their
proposed solution had Ct (σ) = 32.92s. Meanwhile, we
observed a cost of Ct (σ) = 32.86s using OCS (set up with
ICLOCS2), and Ct (σ) = 32.88s using FlowFMT*. Our
method ran with 40,000 samples to match the spatial res-
olution of Kularatne et al. (2018). This indicates that both
approaches generate similar valid solutions for theminimum-
time problem.

Finding the true absolute values for the optimal paths con-
sidering theminimum-energy cost function is amore difficult
task in the scenario involving gyres. Since the double-gyre
flow model has parallel streamlines that circulate the cen-
ter of each gyre, a vehicle without actuation would just drift
around the center of its current gyre, carried by the flow.
To reach a position in a different streamline while minimiz-
ing the energy spent, the vehicle must move from streamline
to streamline with the minimum speed possible. In an ideal
scenario, this speed and its resultant energy cost could be
as small as we wanted. Clearly, very small costs would also
result in solutions with an excessive final time. A discussion
related to this problem was made by Kirk (2004). We then
conclude that the true minimum energy cost is dependent on
the minimum speed that the vehicle produces relative to the
flow. This issue is not elucidated by Kularatne et al. (2018)

123

Autonomous Robots (2024) 48 :27 Page 13 of 19 27

Fig. 9 Motion planning for a vehicle crossing a 3D jet flow. The robot moves from the start position (•◦) to the goal (•◦). The solution found with the
adapted FlowFMT* using 204,800 samples is shown in red () and the optimal solution found using the OCS is shown in black () (Color figure
online)

Table 2 Performance metric of the trajectories shown in Fig. 10 com-
puted by FlowFMT* and optimal control method

FlowFMT* ICLOCS2

Goal �xg Ct [s] Ce [μJ] Ct [s] Ce [μJ]

[1.9, 0.9]T 32.89 1.120 32.86 2.532

[1.9, 1.1]T 35.12 1.779 35.06 1.747

[1.5, 1.0]T 34.47 0.834 34.43 0.737

[1.9, 1.9]T 30.15 1.681 30.11 1.204

[0.1, 1.9]T 27.58 1.584 27.62 2.143

when their OCS solution was explained. To allow the OCS
to find a solution with a finite and reasonable time, we set
the inferior limit of the vehicle’s speed relative to the flow
to 0.0001ms−1 (0.02% of the maximum relative speed). For
FlowFMT*, we do not enforce a minimum speed since it is
calculated using (10),whichwill be zero only in the rare cases
where the next waypoint is completely aligned with the flow.
Figure10c and d show that our method can find solutions
that are similar to the ones found by the OCS. Numerical
comparisons for all the paths shown are presented in Table 2.

The average computational time spent by FlowFMT* to
compute the paths in Fig. 10 was 74s, while the OCS was
“generally” able to finish in a few seconds. However, we
also observed that the OCS computational time can increase
drastically (up to minutes) if obstacles (prohibited regions)
are added and, consequently, more active constraints are in
place, or if the problem is not set up correctly (poor ini-

Table 3 Performance and computational time metrics (in seconds) of
the trajectories shown in Fig. 11 computed by FlowFMT* and the
optimal control method (1) initialized with a straight line trajectory
between start and goal and (2) initialized with the trajectory computed
by FlowFMT*

FlowFMT* OCS (1) OCS (2)

#Obs Ct �tc Ct �tc Ct �tc

0 30.13 204.9 30.11 1.735 30.11 3.738

5 30.13 206.0 30.11 2.360 30.11 5.893

10 30.53 210.9 38.89 2.734 30.45 7.212

20 31.30 221.0 40.95 3.031 31.89 21.15

40 31.61 227.7 46.14 47.45 33.41 140.3

80 31.80 290.1 – >1500 32.39 1299

tial guess, poor constraint limits, etc.). Furthermore, OCS
solutions tend to converge to local minima, which does not
happen with our graph-based solution. Depending on the ini-
tial guess, the OCS solutions either get stuck in suboptimal
homotopies or show additional loops around gyres, introduc-
ing suboptimality.

This behavior is further explored in the experiment shown
in Fig. 11, where we incrementally add randomly gener-
ated prohibited regions to a scenario and test FlowFMT*
and OCS. The radii and center coordinates of the pro-
hibited regions are sampled from uniform distributions,
U (0.02, 0.08) and U (0.0, 2.0) respectively. In this exper-
iment OCS is initialized in two forms: 1) with a straight

123

27 Page 14 of 19 Autonomous Robots (2024) 48 :27

Fig. 10 Paths planned by FlowFMT* () in a two-dimensional double-
gyre flow (→) compared to the associated optimal control problem ().
On the left, we show the regions where the speed of the flow is greater
(�) and smaller (�) than the maximum speed of the vehicle relative to

the flow. On the right, we show FlowFMT* trees, with vertices colored
by their costs. The minimum-time cost function was used in (a) and (b)
and the minimum-energy cost function in (c) and (d)

trajectory from start to end, and 2) using the optimal tra-
jectory found with FlowFMT*. The optimal time costs and
the computational times for each test are shown in Table 3.
We observe that in the absence or with sparse distribution
of prohibited regions (Fig. 11a and b), OCS can reach opti-
mal trajectories in less time compared to trajectories of the
same quality computed with FlowFMT*. However, as the

number of prohibited regions grows, it is possible to see the
trajectories found by OCS getting trapped in sub-optimal
homotopies. Also, the computational time grows consider-
ably. By comparing the computational time from situations
with no prohibited regions (Fig. 11a) to environmentswith 80
prohibited regions (Fig. 11f) we noticed that the time grows
1.4× with FlowFMT*, mainly due to collision checking. On

123

Autonomous Robots (2024) 48 :27 Page 15 of 19 27

Fig. 11 Comparison of FlowFMT* and optimal control in a two-
dimensional double-gyre flow with an increasing number of prohibited
regions (��): a 0 regions, b 5 regions, c 10 regions, d 20 regions, e
40 regions, and f 80 regions. The solution trajectory computed by

FlowFMT* () was found using 102,400 samples. For each scenario,
two solutions were found with optimal control. The first was initialized
with a simple straight trajectory () and the second using the trajectory
found by FlowFMT* ()

the other hand, the computational time grows 347.5× for
the OCS initialized with FlowFMT* trajectory. OCS with a
straight line initialization did not converge before 25min,
when it was interrupted.

The Policy-FlowFMT* in Algorithm 3 was also com-
pared to the solutions obtained with ICLOCS2. First, we
found trajectories from 20 random initial positions to a
single final position �xgoal = [1.9, 0.9]T in the double-
gyre environment without prohibited regions. We provided a
straight line between the start and goal as the initial guess
for the OCS. In our algorithm, we tested different reso-
lutions, doubling the number of samples from 100 × 20

to 100 × 210. The results are shown in Fig. 12. It is pos-
sible to see that 2 of the 20 trajectories were dissonant,
with FlowFMT* finding lower-cost solutions (in fact, better
solutions). As mentioned before, this could be solved by pro-
viding a better initial guess for the OCS. Figure12b shows
how close the cost found by FlowFMT* gets to the “true”

cost found by ICLOCS2 on the other 18 trajectories in terms
of cost ratio (i.e., Ct (σFlowFMT*)/Ct (σOCS)). As expected,
the cost ratio approaches one when the number of samples
increases. Depending on the validity of the locally constant
flowassumptions, FlowFMT*maynot find trajectorieswith a
cost that is necessarily higher than the OCS solutions. How-
ever, as the number of samples increases, the assumption
becomes more valid, and the cost estimate becomes more
realistic. Figure12b also shows how the computational time
to compute the policy increases as the number of samples
increases. Despite that, remember that a policy is only com-
puted once for each goal position, which can make this time
diluted among the number of future trajectories that need to
be computed using such a policy.

The Policy-FlowFMT* algorithm can also be used to
compute a velocity vector field as shown in Fig. 13b for an
environment with prohibited regions. This figure also shows
simulated trajectories that illustrate how the vector field can

123

27 Page 16 of 19 Autonomous Robots (2024) 48 :27

Fig. 12 Policy-FlowFMT* computed over the 2D double-gyre flow environment. In awe compare the solution for 20 random initial positions using
our method and ICLOCS2. In b we show that our solution approaches the optimal solution with more samples at the cost of more computational
time

Fig. 13 Comparisonwith optimal control: aComparison of FlowFMT*
and optimal control in a two-dimensional double-gyre flow with pro-
hibited regions (��). Both algorithms provide similar solutions when
optimal control has a good initial guess (). However, optimal control
with a bad initial guess () can return paths with a different homotopy.

b Comparison of Policy-FlowFMT* and optimal control for real-time
control in the presence of a disturbance. After an actuation fault, the
vector field (→) created using Policy-FlowFMT* brings the vehicle to
the goal following an optimal trajectory (· · ·) while optimal control (· · ·)
leads the vehicle to cross a prohibited region

123

Autonomous Robots (2024) 48 :27 Page 17 of 19 27

Fig. 14 Navigating in a 3D double-gyre flow with prohibited regions.
ThePolicy-FlowFMT* solution () using 102,400 samples is compared
to the solution (· · ·) obtained from a simulation using the policy vector
field (→), and the solution obtained from an optimal control problem
solver ()

help recover the vehicle after an actuation fault, while the
OCS solution may lead to a collision. We considered that
the OCS solution and the vector field are both used in real-
time to control the vehicle. We then simulated that vehicle
lost power for 10 s starting at t = 5 s. Figure13b shows that
at this moment, the vehicle drifts with the flow due to the
lack of actuation. When the actuation is recovered, the OCS
solution is not valid anymore, leading the vehicle to a prohib-
ited region. In the best-case scenario, if a trajectory tracker
was available, the vehicle maybe would be able to retake the
path, at the cost of suboptimality of the resultant trajectory.
In comparison, the vector field, no matter where the control
is regained, would guide the vehicle through an optimal path
from that position to the goal, as can be verified in Fig. 13b.

4.2.2 Three-dimensional gyres

Figure 14 shows the vehicle’s trajectories from �xstart =
[0.1, 0.1, 0.1]T to �xgoal = [1.9, 0.9, 0.9]T moving in a
3D double-gyre flow (as defined in (16)) with prohibited
regions. We compared the performance of the optimal trajec-
tories obtained by Policy-FlowFMT* using 102,400 samples
and OCS (ICLOCS2). The OCS trajectory resulted in a
time cost of Ct (σ) = 28.18s. The cost of the trajectory
obtained directly from the tree built using Policy-FlowFMT*
is Ct (σ) = 28.91s. By integrating the vector field resultant
from the tree generated by Policy-FlowFMT* with a 0.1s
time step,we obtain a trajectory that reaches the goal in 29.4s.

5 Conclusion

This paper presented a method for finding optimal paths and
policies for holonomic vehicles moving in the presence of
strong currents. We modified FMT* by defining new neigh-
borhood sets that consider the directionality of the vehicle’s
movement due to the flow and reduce the number of calls to
the cost function. These sets are defined using a reachability
cone that restricts the space that can be reached when strong
currents are found (i.e., the flow speed is greater than the
vehicle’s relative speed to the flow). The reachability cone is
also used to define a minimum-energy cost function for this
type of environment.

Additionally, we provide simplemodifications to our orig-
inal path-planning algorithm to calculate global policies to
a goal. By using these methods, we can obtain paths with
costs similar to the paths obtained using optimal control
techniques without significantly increasing the computation
time of the solution. Moreover, the proposed methods highly
simplify the introduction of obstacles and other constraints,
guaranteeing that the optimal homotopy is found when the
number of samples is high enough. Finally, we show through
a simulation that the policy generated by ourmethod is inher-
entlymore resilient to actuation failures than optimal control.
Therefore, the methods in this paper should be preferred over
previous solutions, especially if the environment contains
obstacles and when replanning is not desirable.

Our future work includes the application of the proposed
methodology to the motion planning problem of aerial vehi-
cles, also known as aerobots, for in-situ exploration of the
atmosphere of Venus. These aerobots are up to three times
slower than the superrotationwinds present on the planet, and
even if they offer 3D control, their reachability is constrained
by the strong winds. To reach some specific locations, the
motion planner needs to find trajectories that circumnavigate
the planet. Consequently, for this application, the algorithms
proposed in this paper need to be extended to allow for peri-
ods of time when the vehicle loses actuation (night side of
the planet) due to the lack of solar energy. In these regions,
the method needs to be able to let the aerobot drift passively
with the flow.

Acknowledgements The authors thank L5 Automation, Inc. for sup-
porting B. Martinez Rocamora Jr. during the revision process of this
manuscript.

AuthorContributions Conceptualization,B.M.R.J. andG.A.S.P.;method-
ology, B.M.R.J. and G.A.S.P.; software, B.M.R.J.; validation, B.M.R.J.
and G.A.S.P.; formal analysis, B.M.R.J. and G.A.S.P.; investigation,
B.M.R.J. and G.A.S.P.; resources, G.A.S.P.; data curation, B.M.R.J.;
writing-original draft preparation, B.M.R.J.; writing-review and edit-
ing, B.M.R.J. and G.A.S.P.; visualization, B.M.R.J.; supervision,
G.A.S.P.; project administration,G.A.S.P.; funding acquisition,G.A.S.P.
All authors have read and agreed to the published version of the
manuscript.

123

27 Page 18 of 19 Autonomous Robots (2024) 48 :27

Funding This work was partially funded by NASA under grant
#80NSSC23M0168.B.MartinezRocamora Jr.was fundedby theStatler
Ph.D. Fellowship while he was a student at the Department of Mechan-
ical and Aerospace Engineering at West Virginia University.

Data Availibility Not applicable.

Material availability Not applicable.

Code availability The code for this research is available in the following
Git repository: https://bitbucket.org/wvufarolab/flowfmtstar.

Declarations

Conflict of interest The authors declare no Conflict of interest.

Ethical approval and consent to participate Not applicable.

Consent for publication Not applicable.

References

Alvarez, A., Caiti, A., & Onken, R. (2004). Evolutionary path planning
for autonomous underwater vehicles in a variable ocean. IEEE
Journal of Oceanic Engineering, 29(2), 418–429. https://doi.org/
10.1109/JOE.2004.827837

Blackmore, L., Kuwata, Y., Wolf, M. T., Assad, C., Fathpour, N., New-
man, C.,& Elfes, A. (2010). Global reachability and path planning
for planetary exploration with montgolfiere balloons. IEEE inter-
national conference on robotics and automation. pp. 3581–3588

Bonin, L., Guitart, A., Delahaye, D., Prats, X., & Feron, E. (2023).
Computing optimal trajectories for light soaring aircraft using fast
marching tree star. Retrieved 2023-02-13, from https://hal-enac.
archivesouvertes.fr/hal-03923994

Chakrabarty, A., & Langelaan, J. (2013). UAV flight path planning in
time varying complex wind-fields. 2013 American control confer-
ence. pp. 2568–2574

Chitsaz, H., & LaValle, S. M. (2007). Timeoptimal paths for a Dubins
airplane. IEEEconference on decision and control. pp. 2379–2384.

Garau, B., Alvarez, A.,& Oliver, G. (2005). Path planning of
autonomous underwater vehicles in current fields with complex
spatial variability: an A* Approach. IEEE international confer-
ence on robotics and automation pp. 194–198.

Greaves, J. S., Richards, A. M. S., Bains, W., Rimmer, P. B., Sagawa,
H., Clements, D. L., Seager, S., Petkowski, J. J., Sousa-Silva, C.,
Ranjan, S., Drabek-Maunder, E., Fraser, H. J., Cartwright, A.,
Mueller-Wodarg, I., Zhan, Z., Friberg, P., Coulson, I., Lee, E., &
Hoge, J. (2020). Phosphine gas in the cloud decks of Venus.Nature
Astronomy, 5(7), 655–664. https://doi.org/10.1038/s41550-020-
1174-4

Janson, L., Schmerling, E., Clark, A., & Pavone,M. (2015). Fast march-
ing tree: A fast marching sampling-based method for optimal
motion planning in many dimensions. The International Journal
of Robotics Research, 34(7), 883–921.

Karaman, S., & Frazzoli, E. (2011). Samplingbased algorithms for
optimal motion planning. The International Journal of Robotics
Research, 30(7), 846–894.

Kirk, D. E. (2004). Optimal control theory: An introduction. Courier
Corporation.

Koay, T.-B., & Chitre, M. (2013). Energy-efficient path planning
for fully propelled AUVs in congested coastal waters. 2013
MTS/IEEE OCEANS-Bergen. pp. 1-9.

Kularatne, D., Bhattacharya, S., & Hsieh, M. A. (2018). Going with the
flow: A graph based approach to optimal path planning in general

flows. Autonomous Robots, 42(7), 1369–1387. https://doi.org/10.
1007/s10514-018-9741-6

Kulkarni, C. S., & Lermusiaux, P. F. (2020). Three-dimensional time-
optimal path planning in the ocean.OceanModelling, 152, 101644.
https://doi.org/10.1016/j.ocemod.2020.101644

Langelaan, J.W. (2008). Tree-based trajectory planning to exploit atmo-
spheric energy. American control conference. pp. 2328–2333.

LaValle, S. M. (2006). Planning algorithms. Cambridge University
Press.

Lee, J. J. H., Yoo, C., Hall, R., Anstee, S.,& Fitch, R. (2017). Energy-
optimal kinodynamic planning for underwater gliders in flow
fields. Australasian conference on robotics and automation.

Li, W., Lu, J., Zhou, H., & Chow, S.-N. (2017). Method of evolving
junctions: A new approach to optimal control with constraints.
Automatica, 78, 72–78.

Martinez Rocamora Jr., B., Juan, A. P. I., & Pereira, G. A. S. (2022).
Towards finding energy efficient paths for hybrid airships in the
atmosphere of venus. International conference on unmanned air-
craft systems. pp. 386-393

Nagpal, L., & Samdani, K. (2017). Project loon: Innovating the connec-
tivityworldwide. IEEE international conference on recent trends in
electronics, information & communication technology. pp. 1778–
1784

Nie, Y., Faqir, O., & Kerrigan, E. C. (2018). ICLOCS2: Try this opti-
mal control problem solver before you try the rest. International
conference on control. pp. 336–336

Oettershagen, P., Achermann, F., Müller, B., Schneider, D& Siegwart,
R. (2017). Towards fully environment-aware UAVs: Real-time
path planning with online 3D wind field prediction in complex
terrain. Retrieved 2021-11-18, from arXiv:1712.03608

Petres, C., Pailhas, Y., Patron, P., Petillot, Y., Evans, J., & Lane, D.
(2007). Path planning for autonomous underwater vehicles. IEEE
Transactions on Robotics, 23(2), 331–341.

Rossi, F., Branch, A., Schodlok, M. P., Stanton, T., Fenty, I. G., Hook,
J. V., & Clark, E. B. (2021). Stochastic Guidance of Buoyancy
Controlled Vehicles under Ice Shelves using Ocean Currents.
IEEE/RSJ international conference on intelligent robots and sys-
tems. pp. 8657–8664.

Rossi, F., Saboia, M., Krishnamoorthy, S., & Vander Hook, J.
(2023). Proximal exploration of venus volcanism with teams
of autonomous buoyancy-controlled balloons. Acta Astronautica,
208, 389–406.

Soulignac, M. (2011). Feasible and optimal path planning in strong cur-
rent fields. IEEE Transactions on Robotics, 27(1), 89–98. https://
doi.org/10.1109/TRO.2010.2085790

Subramani, D. N., Wei, Q. J., & Lermusiaux, P. F. (2018). Stochas-
tic time-optimal path-planning in uncertain, strong, and dynamic
flows.Computer Methods in Applied Mechanics and Engineering,
333, 218–237. https://doi.org/10.1016/j.cma.2018.01.004

VEXAG (2019). Roadmap for Venus Exploration (Tech. Rep.). Venus
Exploration Analysis Group.

Zhai, H., Hou, M., Zhang, F., & Zhou, H. (2022). Method of evolving
junction on optimal path planning in flows fields. Autonomous
Robots, 46(8), 929–947.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://bitbucket.org/wvufarolab/flowfmtstar
https://doi.org/10.1109/JOE.2004.827837
https://doi.org/10.1109/JOE.2004.827837
https://hal-enac.archivesouvertes.fr/hal-03923994
https://hal-enac.archivesouvertes.fr/hal-03923994
https://doi.org/10.1038/s41550-020-1174-4
https://doi.org/10.1038/s41550-020-1174-4
https://doi.org/10.1007/s10514-018-9741-6
https://doi.org/10.1007/s10514-018-9741-6
https://doi.org/10.1016/j.ocemod.2020.101644
http://arxiv.org/abs/1712.03608
https://doi.org/10.1109/TRO.2010.2085790
https://doi.org/10.1109/TRO.2010.2085790
https://doi.org/10.1016/j.cma.2018.01.004

Autonomous Robots (2024) 48 :27 Page 19 of 19 27

Bernardo Martinez Rocamora Jr.
received his bachelor’s degree in
aeronautical engineering and his
master’s degree in mechanical
engineering from the University
of São Paulo, in São Carlos, SP,
Brazil, in 2016 and 2019, respec-
tively. He received his Ph.D.
degree in aerospace engineering
from Benjamin M. Statler School
of Engineering and Mineral Sci-
ences at West Virginia Univer-
sity, WV, USA in December 2023.
During his Ph.D., he was a mem-
ber of the Field and Aerial

Robotics (FARO) Laboratory and the recipient of the Statler Ph.D. Fel-
lowship. He is currently a robotics research engineer for L5 Automa-
tion, Inc., and he is working on the development of autonomous
strawberry harvesters. His research interests include field robotics,
autonomous systems and robot motion planning.

Guilherme A. S. Pereira received
his bachelor’s and master’s degre-
es in electrical engineering from
the Federal University of Minas
Gerais (UFMG), Brazil, in 1998
and 2000, respectively, and his
PhD degree in computer science
from the same university in 2003.
He received the Gold Medal Award
from the Engineering School of
UFMG for the first place among
the electrical engineer students in
1998. From 11/2000 to 05/2003,
he was a visiting scientist at the
GRASP Laboratory of the Univer-

sity of Pennsylvania, USA. He was also a visiting scholar at The
Robotics Institute of Carnegie Mellon University, USA, from 08/2015
to 07/2016. From 07/2004 to 07/2018, he was a full-time professor
at the Electrical Engineering Department of UFMG. He is currently a
Professor at the Department of Mechanical, Materials and Aerospace
Engineering of West Virgina University, USA, where he is the direc-
tor of the Field and Aerial Robotics (FARO) Laboratory. His research
interests include field robotics, robot motion planning, robot percep-
tion, and autonomous vehicles development. He is a Senior Member
of the IEEE.

123

	Optimal policies for autonomous navigation in strong currents using fast marching trees
	Abstract
	1 Introduction
	2 Problem definition
	2.1 Environment
	2.2 Robot
	2.3 Problem statement

	3 Methodology
	3.1 Flow-aware cost functions
	3.1.1 Minimum-time cost function
	3.1.2 Minimum-energy cost functions

	3.2 Flow-aware neighborhood sets
	3.3 Flow-aware fast marching tree
	3.3.1 Flow-aware FMT*
	3.3.2 Computing a policy using flow-aware FMT*
	3.3.3 Analysis

	4 Experimental results
	4.1 Canonical jet flow environment
	4.1.1 Two-dimensional jet
	4.1.2 Three-dimensional jet

	4.2 Double-gyre flow environment
	4.2.1 Two-dimensional gyre
	4.2.2 Three-dimensional gyres

	5 Conclusion
	Acknowledgements
	References

