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Proofs of Theorems

EC.1. Proof of Theorem 1.

Theorem 1. Let π′∗ be an optimal policy for AP. Then, an optimal policy for BP, π∗, is obtained

using rules: (1) whenever a job arrives and π′∗ assigns a worker with success rate zero, discard the

job, (2) whenever a job arrives and π′∗ assigns a worker with success rate p > 0, assign a worker

with the same success rate.

Proof: Note that π∗ and π′∗ have the same expected rewards for BP and AP, respectively. Suppose

that π∗ is not optimal for BP, and that there exists a policy πbetter that yields a higher expected

reward. Then define policy π′better for AP as follows:

• whenever a job arrives and πbetter discards it, assign a worker with success rate zero

• whenever a job arrives and πbetter assigns a worker with success rate p, assign a worker with

the same success rate.

Consider the reward earned in BP by making assignments for sequence s = {xj}Nj=1 according

to policy πbetter. Then, the same reward is earned in AP by making assignments for sequence

s′ = {{x′j}
Nmax
j=1 : x′j = xj for j = 1,2, ...,N and x′j = 0 for j =N + 1,N + 2, ...,Nmax} according to

policy π′better. Also, by (1),

P ({X ′n > 0}
⋂
{X ′n+1 = 0}) = 1 ·

∑Nmax

i=2 Pi∑Nmax

i=1 Pi

·
∑Nmax

i=3 Pi∑Nmax

i=2 Pi

· ...... ·
∑Nmax

i=n Pi∑Nmax

i=n−1Pi

· Pn∑Nmax

i=n Pi

= Pn,

which means that the probability of encountering sequence s′ in AP is equal to the probability

of encountering sequence s in BP. Therefore, πbetter and π′better yield the same expected rewards

for BP and AP, respectively, and hence, π′better is a better policy than π′∗, which contradicts the

assumption that π′∗ is optimal. �

EC.2. Proof of Theorem 3.

Theorem 3. Whenever job n= 1,2, ...,Nmax− 1 arrives in AP, the optimal assignment policy is

to assign the nth job to the worker with the mth highest success rate (available at the time the

assignment decision has to be made) if x′n lies in the mth highest of the intervals, defined by the
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fixed breakpoints E[ZNmax
1,n+1 |X ′n > 0], E[ZNmax

2,n+1 |X ′n > 0],..., E[ZNmax
Nmax−n,n+1|X ′n > 0]. These breakpoints

are computed recursively,

E[ZNmax
m,n+1|X ′n > 0] =

∑Nmax

i=n+1P (N = i)∑Nmax

i=n P (N = i)
(Fn+1(E[ZNmax

m,n+2|X ′n+1 > 0])E[ZNmax
m,n+2|X ′n+1 > 0]

+
∫ E[ZNmax

m−1,n+1|X
′
n+1>0]

E[ZNmax
m,n+2|X

′
n+1>0]

xdFn+1(x) + (1−Fn+1(E[ZNmax
m−1,n+1|X ′n+1 > 0]))E[ZNmax

m−1,n+1|X ′n+1 > 0]).

(EC.1)

Proof: Theorem 2 can be used to establish an optimal policy for AP. Observe that for any 1≤

m≤Nmax − n+ 1 and 1≤ n≤Nmax − 1, computing the expectation E[ZNmax
m,n+1|Fn] (see Theorem

2) involves only the random variables X ′j, j = n + 1, n + 2, ...,Nmax. The distributions of these

variables depend only on the value X ′n (which is known at the time E[ZNmax
m,n+1|Fn] is computed), and

not on X ′1,X
′
2, ...,X

′
n−1. Therefore, the stochastic process {X ′j}

Nmax
j=1 has the Markovian property,

and hence, E[ZNmax
m,n+1|Fn] = E[ZNmax

m,n+1|X ′n] Next, note that by (1), P [X ′j = 0|X ′n = 0] = 1 for all

j = n+ 1, n+ 2, ...,Nmax. Then by definition, ZNmax
1,Nmax

= 0 and P [ZNmax
m,r = 0|X ′n = 0] = 1 for any

1 ≤m ≤Nmax − r + 1, r = n+ 1, n+ 2, ...,Nmax − 1, and hence, E[ZNmax
m,n+1|X ′n = 0] = 0. Also note

that E[ZNmax
m,n+1|X ′n+1 = 0] = 0. Therefore, conditioning on Xn+1, E[ZNmax

m,n+1|X ′n > 0] can be expressed

as

E[ZNmax
m,n+1|X ′n > 0] =E[ZNmax

m,n+1|X ′n+1 > 0]P (X ′n+1 > 0|X ′n > 0)

+E[ZNmax
m,n+1|X ′n+1 = 0]P (X ′n+1 = 0|X ′n > 0) =

∑Nmax

i=n+1Pi∑Nmax

i=n Pi

E[ZNmax
m,n+1|X ′n+1 > 0]. (EC.2)

By definition, ZNmax
m,n+1 can be expressed through ZNmax

m,n+2 and ZNmax
m+1,n+2, and hence, (EC.2) becomes

∑Nmax

i=n+1Pi∑Nmax

i=n Pi

E[[X ′n+1|X ′n+1 > 0]∨E[ZNmax
m,n+2|X ′n+1 > 0]∧E[ZNmax

m−1,n+1|X ′n+1 > 0]]

=
∑Nmax

i=n+1Pi∑Nmax

i=n Pi

E[Xn+1 ∨E[ZNmax
m,n+2|X ′n+1 > 0]∧E[ZNmax

m−1,n+1|X ′n+1 > 0]]. (EC.3)

Note that in (EC.3), P [X ′n+1 =Xn+1|X ′n+1 > 0] = 1 by (1). Since the distribution of Xn+1 is given,

then (EC.3) becomes (EC.1). �
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EC.3. Proof of Theorem 6.

Theorem 6. The optimal expected accumulated reward EV C
1 can be computed using the recursion,

EV c
j =

∑Nmax

i=j Pi∑Nmax

i=j−1Pi

[P (Wj ≤ c, Rj +EV
c−Wj

j+1 ≥EV c
j+1)

×E[Rj +EV
c−Wj

j+1 |Wj ≤ c, Rj +EV
c−Wj

j+1 ≥EV c
j+1]

+[P (Rj +EV
c−Wj

j+1 <EV c
j+1, Wj ≤ c) +P (Wj > c)]EV c

j+1 ], (EC.4)

with boundary conditions EV c
j = 0 for any c and j ≥Nmax.

Proof: By the definition of EV c
j and conditioning on the event that job j does arrive,

EV c
j ≡E(V c

j | job j− 1 has arrived) = E(V c
j | job j arrives)P (job j arrives | job j− 1 has arrived)

+E(V c
j | job j does not arrive)P (job j does not arrive | job j− 1 has arrived).

Note that P (job j arrives | job j − 1 has arrived) =
∑Nmax

i=j Pi∑Nmax
i=j−1 Pi

. Also, if job j does not arrive, then

no reward can be collected, and hence, E(V c
j | job j does not arrive) = 0. Then, (EC.4) follows

from Theorem 5, since the optimal assignment policy, described by (3), is used for making each

allocation decision. Since no job can arrive after Nmax jobs, no reward can be collected, which

establishes the boundary conditions. �

EC.4. Proof of Theorem 7.

Theorem 7. Assume that

B ≡E[ sup
j
|Xj

Wj

| ]<+∞, and P [N <+∞] = 1. (EC.5)

Then for any j = 1,2, ... and c∈ [0,C], the infinite sequence {EV c
j (Nmax)}+∞Nmax=1 converges to the

finite limit EV c
j (∞) ≡ limNmax→+∞EV

c
j (Nmax), and Theorem 5 establishes an optimal policy for

DSKP, where the pmf of the number of jobs has infinite support, with EV c
j replaced by EV c

j (∞),

j = 1,2, ..., c∈ [0,C].
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Proof: For any j = 1,2, ..., c ∈ [0,C], and Nmax = 1,2, ..., EV c
j (Nmax + 1) ≥ EV c

j (Nmax) and

EV c
j (Nmax)≤B c. The infinite sequence {EV c

j (Nmax)}+∞Nmax=1 is monotonically increasing and uni-

formly bounded, and hence, limNmax→+∞EV
c

j (Nmax) exists and is finite.

For any j = 1,2, ... and c∈ [0,C], let OV c
j denote the optimal conditional expected accumulated

reward from the allocation of resource capacity c to jobs j, j+1, ..., given that job j−1 has arrived.

Theorem 5 establishes an optimal policy for DSKP, where the pmf of the number of jobs has

infinite support, with EV c
j replaced by OV c

j , j = 1,2, ..., c∈ [0,C]. It suffices to show that for any

j = 1,2, ... and c∈ [0,C], OV c
j =EV c

j (∞)≡ limNmax→+∞EV
c

j (Nmax).

For any j = 1,2, ..., c ∈ [0,C] and Nmax = 1,2, ..., OV c
j ≥ EV c

j (Nmax) and

limNmax→+∞EV
c

j (Nmax)≥EV c
j (Nmax), and hence, OV c

j −EV c
j (∞)> 0.

Suppose that an optimal policy for accepting jobs is followed up until the arrival of some job

N , and then the jobs N + 1,N + 2, ... can be accepted without regard to their weights. Then, the

expected total accumulated reward is higher than OV c
j , and the following expression holds,

OV c
j −EV c

j (∞)≤EV c
j (N) +

∞∑
i=N+1

[XiP (job i arrives)]−EV c
j (∞)≤BC

∞∑
i=N+1

[P (job i arrives)].

By (EC.5), for any ∆> 0, there exists N∆ such that
∑∞

i=N∆+1[P (job i arrives)]< ∆
B C

, which means

that with N =N∆, OV c
j −EV c

j (∞)<∆. Since ∆ can be chosen arbitrarily, then OV c
j =EV c

j (∞).
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