e-companion

ONLY AVAILABLE IN ELECTRONIC FORM

Electronic Companion—"Stochastic Sequential Decision-Making with a Random Number of Jobs" by Alexander G. Nikolaev and Sheldon H. Jacobson, *Operations Research*, DOI 10.1287/opre.1090.0778.

Proofs of Theorems

EC.1. Proof of Theorem 1.

THEOREM 1. Let π'^* be an optimal policy for AP. Then, an optimal policy for BP, π^* , is obtained using rules: (1) whenever a job arrives and π'^* assigns a worker with success rate zero, discard the job, (2) whenever a job arrives and $\pi^{\prime*}$ assigns a worker with success rate $p > 0$, assign a worker with the same success rate.

Proof: Note that π^* and π'^* have the same expected rewards for BP and AP, respectively. Suppose that π^* is not optimal for BP, and that there exists a policy π_{better} that yields a higher expected reward. Then define policy π'_{better} for AP as follows:

- whenever a job arrives and π_{better} discards it, assign a worker with success rate zero
- whenever a job arrives and π_{better} assigns a worker with success rate p, assign a worker with the same success rate.

Consider the reward earned in BP by making assignments for sequence $s = \{x_j\}_{j=1}^N$ according to policy π_{better} . Then, the same reward is earned in AP by making assignments for sequence $s' = \{\{x'_j\}_{j=1}^{N_{max}} : x'_j = x_j \text{ for } j = 1, 2, ..., N \text{ and } x'_j = 0 \text{ for } j = N+1, N+2, ..., N_{max}\}\text{ according to }$ policy π'_{better} . Also, by (1),

$$
P(\lbrace X'_{n} > 0 \rbrace \bigcap \lbrace X'_{n+1} = 0 \rbrace) = 1 \cdot \frac{\sum_{i=2}^{N_{max}} P_{i}}{\sum_{i=1}^{N_{max}} P_{i}} \cdot \frac{\sum_{i=3}^{N_{max}} P_{i}}{\sum_{i=2}^{N_{max}} P_{i}} \cdot \dots \cdot \frac{\sum_{i=n}^{N_{max}} P_{i}}{\sum_{i=n-1}^{N_{max}} P_{i}} \cdot \frac{P_{n}}{\sum_{i=n}^{N_{max}} P_{i}} = P_{n},
$$

which means that the probability of encountering sequence s' in AP is equal to the probability of encountering sequence s in BP. Therefore, π_{better} and π'_{better} yield the same expected rewards for BP and AP, respectively, and hence, π'_{better} is a better policy than π'^* , which contradicts the assumption that π'^* is optimal.

EC.2. Proof of Theorem 3.

THEOREM 3. Whenever job $n = 1, 2, ..., N_{max} - 1$ arrives in AP, the optimal assignment policy is to assign the n^{th} job to the worker with the m^{th} highest success rate (available at the time the assignment decision has to be made) if x_n' lies in the mth highest of the intervals, defined by the

fixed breakpoints $E[Z_{1,n+1}^{N_{max}}|X'_n>0], E[Z_{2,n+1}^{N_{max}}|X'_n>0],..., E[Z_{N_{max}-n,n+1}^{N_{max}}|X'_n>0].$ These breakpoints are computed recursively,

$$
E[Z_{m,n+1}^{N_{max}}|X'_{n} > 0] = \frac{\sum_{i=n+1}^{N_{max}} P(N=i)}{\sum_{i=n}^{N_{max}} P(N=i)} (F_{n+1}(E[Z_{m,n+2}^{N_{max}}|X'_{n+1} > 0]) E[Z_{m,n+2}^{N_{max}}|X'_{n+1} > 0]
$$

+
$$
\int_{E[Z_{m,n+2}^{N_{max}}|X'_{n+1} > 0]}^{E[Z_{m-1,n+1}^{N_{max}}|X'_{n+1} > 0]} x dF_{n+1}(x) + (1 - F_{n+1}(E[Z_{m-1,n+1}^{N_{max}}|X'_{n+1} > 0])) E[Z_{m-1,n+1}^{N_{max}}|X'_{n+1} > 0].
$$

(EC.1)

Proof: Theorem 2 can be used to establish an optimal policy for AP. Observe that for any $1 \leq$ $m \le N_{max} - n + 1$ and $1 \le n \le N_{max} - 1$, computing the expectation $E[Z_{m,n+1}^{N_{max}}|\mathcal{F}_n]$ (see Theorem 2) involves only the random variables X'_j , $j = n + 1, n + 2, ..., N_{max}$. The distributions of these variables depend only on the value X_n' (which is known at the time $E[Z_{m,n+1}^{N_{max}}|\mathcal{F}_n]$ is computed), and not on $X'_1, X'_2, ..., X'_{n-1}$. Therefore, the stochastic process $\{X'_j\}_{j=1}^{N_{max}}$ has the Markovian property, and hence, $E[Z_{m,n+1}^{N_{max}}|\mathcal{F}_n] = E[Z_{m,n+1}^{N_{max}}|X_n'|$ Next, note that by (1), $P[X_j' = 0|X_n' = 0] = 1$ for all $j = n+1, n+2, ..., N_{max}$. Then by definition, $Z_{1, N_{max}}^{N_{max}} = 0$ and $P[Z_{m,r}^{N_{max}} = 0 | X_n' = 0] = 1$ for any $1 \leq m \leq N_{max} - r + 1, r = n + 1, n + 2, ..., N_{max} - 1,$ and hence, $E[Z_{m,n+1}^{N_{max}} | X'_n = 0] = 0$. Also note that $E[Z_{m,n+1}^{N_{max}}|X'_{n+1}=0]=0$. Therefore, conditioning on X_{n+1} , $E[Z_{m,n+1}^{N_{max}}|X'_{n}>0]$ can be expressed as

$$
E[Z_{m,n+1}^{N_{max}}|X'_{n} > 0] = E[Z_{m,n+1}^{N_{max}}|X'_{n+1} > 0]P(X'_{n+1} > 0|X'_{n} > 0)
$$

$$
+ E[Z_{m,n+1}^{N_{max}}|X'_{n+1} = 0]P(X'_{n+1} = 0|X'_{n} > 0) = \frac{\sum_{i=n+1}^{N_{max}} P_{i}}{\sum_{i=n}^{N_{max}} P_{i}} E[Z_{m,n+1}^{N_{max}}|X'_{n+1} > 0].
$$
 (EC.2)

By definition, $Z_{m,n+1}^{N_{max}}$ can be expressed through $Z_{m,n+2}^{N_{max}}$ and $Z_{m+1,n+2}^{N_{max}}$, and hence, (EC.2) becomes

$$
\frac{\sum_{i=n+1}^{N_{max}} P_i}{\sum_{i=n}^{N_{max}} P_i} E[[X'_{n+1} | X'_{n+1} > 0] \vee E[Z^{N_{max}}_{m,n+2} | X'_{n+1} > 0] \wedge E[Z^{N_{max}}_{m-1,n+1} | X'_{n+1} > 0]]
$$
\n
$$
= \frac{\sum_{i=n+1}^{N_{max}} P_i}{\sum_{i=n}^{N_{max}} P_i} E[X_{n+1} \vee E[Z^{N_{max}}_{m,n+2} | X'_{n+1} > 0] \wedge E[Z^{N_{max}}_{m-1,n+1} | X'_{n+1} > 0]].
$$
\n(EC.3)

Note that in (EC.3), $P[X'_{n+1} = X_{n+1} | X'_{n+1} > 0] = 1$ by (1). Since the distribution of X_{n+1} is given, then $(EC.3)$ becomes $(EC.1)$.

EC.3. Proof of Theorem 6.

THEOREM 6. The optimal expected accumulated reward EV_1^C can be computed using the recursion,

$$
EV_j^c = \frac{\sum_{i=j}^{N_{max}} P_i}{\sum_{i=j-1}^{N_{max}} P_i} \left[P(W_j \le c, R_j + EV_{j+1}^{c-W_j} \ge EV_{j+1}^c) \right]
$$

× $E[R_j + EV_{j+1}^{c-W_j} | W_j \le c, R_j + EV_{j+1}^{c-W_j} \ge EV_{j+1}^c] \right]$
+ $[P(R_j + EV_{j+1}^{c-W_j} < EV_{j+1}^c, W_j \le c) + P(W_j > c)] \cdot EV_{j+1}^c],$ (EC.4)

with boundary conditions $EV_j^c = 0$ for any c and $j \ge N_{max}$.

Proof: By the definition of EV_j^c and conditioning on the event that job j does arrive,

 $EV_j^c \equiv E(V_j^c | \text{job } j-1 \text{ has arrived}) = E(V_j^c | \text{job } j \text{ arrives}) P(\text{job } j \text{ arrives} | \text{job } j-1 \text{ has arrived})$

 $+E(V_j^c|job j$ does not arrive) P(job j does not arrive |job j – 1 has arrived).

Note that $P(job \, j \text{ arrives} | job \, j-1 \text{ has arrived}) = \frac{\sum_{i=1}^{N_{max}} P_i}{\sum_{i=1}^{N_{max}} P_i}$ $\frac{\sum_{i=j}^{N_{max}} r_i}{\sum_{i=j-1}^{N_{max}} P_i}$. Also, if job j does not arrive, then no reward can be collected, and hence, $E(V_j^c|j\omega j$ does not arrive) = 0. Then, (EC.4) follows from Theorem 5, since the optimal assignment policy, described by (3), is used for making each allocation decision. Since no job can arrive after N_{max} jobs, no reward can be collected, which establishes the boundary conditions.

EC.4. Proof of Theorem 7.

THEOREM 7. Assume that

$$
B \equiv E[\sup_j |\frac{X_j}{W_j}|] < +\infty, \text{ and } P[N < +\infty] = 1.
$$
 (EC.5)

Then for any $j = 1, 2, ...$ and $c \in [0, C]$, the infinite sequence $\{EV_j^c(N_{max})\}_{N_{max}=1}^{+\infty}$ converges to the finite limit $EV_j^c(\infty) \equiv \lim_{N_{max}\to +\infty} EV_j^c(N_{max})$, and Theorem 5 establishes an optimal policy for DSKP, where the pmf of the number of jobs has infinite support, with EV_j^c replaced by $EV_j^c(\infty)$, $j = 1, 2, ..., c \in [0, C].$

Proof: For any $j = 1, 2, ..., c \in [0, C]$, and $N_{max} = 1, 2, ..., EV_j^c(N_{max} + 1) \ge EV_j^c(N_{max})$ and $EV_j^c(N_{max}) \leq Bc$. The infinite sequence $\{EV_j^c(N_{max})\}_{N_{max}=1}^{+\infty}$ is monotonically increasing and uniformly bounded, and hence, $\lim_{N_{max}\to+\infty} EV_j^c(N_{max})$ exists and is finite.

For any $j = 1, 2, ...$ and $c \in [0, C]$, let OV_j^c denote the optimal *conditional* expected accumulated reward from the allocation of resource capacity c to jobs $j, j+1, \ldots$, given that job $j-1$ has arrived. Theorem 5 establishes an optimal policy for DSKP, where the pmf of the number of jobs has infinite support, with EV_j^c replaced by OV_j^c , $j = 1, 2, ..., c \in [0, C]$. It suffices to show that for any $j = 1, 2, ...$ and $c \in [0, C], O V_j^c = EV_j^c(\infty) \equiv \lim_{N_{max} \to +\infty} EV_j^c(N_{max}).$

For any $j = 1, 2, ..., c \in [0, C]$ and $N_{max} = 1, 2, ..., OV_j^c \geq EV_j^c(N_{max})$ and $\lim_{N_{max}\to+\infty} EV_i^c(N_{max}) \ge EV_i^c(N_{max}),$ and hence, $OV_i^c - EV_i^c(\infty) > 0.$

Suppose that an optimal policy for accepting jobs is followed up until the arrival of some job N, and then the jobs $N+1, N+2,...$ can be accepted without regard to their weights. Then, the expected total accumulated reward is higher than OV_j^c , and the following expression holds,

$$
OV_j^c - EV_j^c(\infty) \le EV_j^c(N) + \sum_{i=N+1}^{\infty} [X_i P(\text{job } i \text{ arrives})] - EV_j^c(\infty) \le BC \sum_{i=N+1}^{\infty} [P(\text{job } i \text{ arrives})].
$$

By (EC.5), for any $\Delta > 0$, there exists N_{Δ} such that $\sum_{i=N_{\Delta}+1}^{\infty} [P(\text{job } i \text{ arrives})] < \frac{\Delta}{BC}$, which means that with $N = N_{\Delta}$, $OV_j^c - EV_j^c(\infty) < \Delta$. Since Δ can be chosen arbitrarily, then $OV_j^c = EV_j^c(\infty)$. \Box