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1. Introduction
Sequential resource allocation problems with uncertainty
have received much attention in the literature. This paper
focuses on two problems in this field: the sequential
stochastic assignment problem (SSAP), and the dynamic
stochastic knapsack problem (DSKP).
Derman et al. (1972) introduced the SSAP: Given a

known finite number of jobs with independent and iden-
tically distributed (i.i.d.) reward values that arrive sequen-
tially, one at a time, how should these jobs be assigned to
workers with known finite success rates, where the assign-
ment of each job should be determined nonanticipatively at
the time the job arrives? Derman et al. (1972) establish an
optimal policy that maximizes the total expected reward,
where the reward is the sum of products of job values and
worker success rates over all assignments.
Theoretical extensions to the investigation by Derman

et al. (1972) include scenarios in which various continuous
distributions of job arrival times are considered (Albright
1974, Sakaguchi 1972, Righter 1987). Other variations and
applications of SSAP have been addressed by Derman et al.
(1975), Nakai (1986), Su and Zenios (2005), Nikolaev et al.
(2007), and McLay et al. (2009). Kennedy (1986) estab-
lished the most general result for SSAP by removing the
assumption of independence and proving that threshold
policies are optimal for any problem of this type, although
the thresholds that define such policies may be random
variables and difficult to compute.

DSKP was first defined by Papastavrou et al. (1996):
Given a limited fixed resource capacity, and jobs with i.i.d.
weights and reward values that arrive sequentially, one at
a time, how should the available resource be allocated
by nonanticipatively accepting or rejecting jobs? Papas-
tavrou et al. (1996) analyze the case of DSKP formulated
for a time horizon of a given number of discrete periods,
with a fixed constant probability of a job arrival in each
such period, for different forms of a joint probability dis-
tribution function for job weights and values. Kleywegt
and Papastavrou (1998, 2001) consider Poisson arrivals in
DSKP. Other variations and applications of DSKP have
been discussed by Prastakos (1983), Lu et al. (1999), and
Van Slyke and Young (2000).
This paper uses conditioning arguments and the results

from Kennedy (1986) to consider extensions to SSAP and
DSKP, where the number of jobs is unknown until after
the final arrival, but follows a (given) discrete distribution
that has either finite or infinite support. The arriving jobs
are assumed to be independent but not necessarily identi-
cally distributed. Note that an optimal policy for a more
restricted version of SSAP was presented by Sakaguchi
(1983) in a different form and without a formal proof; this
paper formally proves and extends those results. Also, the
original finite-horizon formulation of DSKP (Papastavrou
et al. 1996) considers discrete arrivals with a random
number of jobs that follows a binomial distribution; this
paper generalizes these results to include other discrete
distributions.
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The paper is organized as follows. Section 2 shows how
the results by Kennedy (1986) can be used to address
the SSAP extension. Section 3 presents a dynamic pro-
gramming (DP) algorithm to solve the DSKP extension.
Section 4 offers concluding comments.

2. SSAP with a Random Number of Jobs
This section addresses the SSAP with a random number of
jobs. First, the case in which the distribution of the number
of jobs has finite support is considered. This result is then
extended to the infinite support case.

2.1. Finite Case

The base problem (BP) is formally stated.
Given. M ∈ �+ workers available to perform N

jobs; a fixed success rate pw associated with worker
w = 1�2� � � � �M ; probability mass function (pmf) Pn for the
number of jobs with independent values arriving sequen-
tially, one at a time; for each job j = 1�2� � � � �N , a job value
cumulative distribution function (cdf) Fj�xj�.

Objective. Find a policy �∗ that determines the
assignment of jobs to workers, Awj ∈ �0�1��w = 1�
2� � � � �M , j = 1�2� � � � �N , such that

∑N
j=1 Awj � 1,

w = 1� 2� � � � �M ,
∑M

w=1 Awj � 1, j = 1� 2� � � � �N , and
E�∗

Pn� �Fj �
N
j=1

	
∑M

w=1

∑N
j=1 pwAwjXj
 is maximized.

The main challenge presented by BP is the randomness
in the number of arriving jobs. To address this challenge, an
auxiliary problem (AP) can be created where the number of
jobs is fixed, but the job values are dependent. Using BP, the
AP is created as follows. Fix the number of workers at Nmax,
the largest value that N can take on (i.e.,

∑Nmax
n=0 Pn = 1).

If Nmax �M , set p′
i = pi for i = 1�2� � � � �Nmax. If Nmax > M ,

set p′
i = pi for i = 1�2� � � � �M and p′

M+1 = p′
M+2 = · · · =

p′
Nmax

= 0. Also, let X ′
1 = X1, and for any j = 2� � � � �Nmax, set

X ′
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xj with probability

∑Nmax
i=j Pi∑Nmax

i=j−1 Pi

� if X ′
j−1 > 0

0 with probability
Pj−1∑Nmax
i=j−1 Pi

� if X ′
j−1 > 0

0� if X ′
j−1 = 0�

(1)

The AP is now formally stated.
Given. Nmax workers available to perform Nmax jobs;

a fixed success rate p′
w associated with worker w =

1�2� � � � �Nmax; Nmax jobs with independent values arriving
sequentially, one at a time; for each job j = 1�2� � � � �Nmax,
a job value cdf F ′

j �x′
j �.

Objective. Find a policy � ′∗ that determines the as-
signment of jobs to workers, A′

wj ∈ �0�1�, w = 1�
2� � � � �Nmax, j = 1�2� � � � �Nmax, such that

∑Nmax
j=1 A′

wj � 1,
w = 1�2� � � � �Nmax,

∑M
w=1 A′

wj � 1, j = 1�2� � � � �Nmax, and
E� ′∗

�F ′
j �

Nmax
j=1

	
∑Nmax

w=1

∑Nmax
j=1 p′

wA′
wjX

′
j 
 is maximized.

By design, BP and AP are closely related. Because
Xj > 0 for any j = 1�2� � � � �N , then by (1), the first N jobs

in BP and AP have the same values. Also, the values of
the subsequent jobs j = N + 1�N + 2� � � � �Nmax in AP are
equal to zero, and no additional reward can be earned (i.e.,
event �Job “j” does not arrive in BP� ≡ �X ′

j = 0 in AP�).
Theorem 1 establishes that if an optimal policy for AP is
available, then an optimal policy for BP can be obtained.

Theorem 1. Let � ′∗ be an optimal policy for AP. Then,
an optimal policy for BP, �∗, is obtained using rules:
(1) whenever a job arrives and � ′∗ assigns a worker with
success rate zero, discard the job, and (2) whenever a job
arrives and � ′∗ assigns a worker with success rate p > 0,
assign a worker with the same success rate.

Proof. See e-companion. An electronic companion to this
paper is available as part of the online version that can be
found at http://or.journal.informs.org/.
To determine an optimal policy � ′∗ for AP, the result

by Kennedy (1986) can be applied. Using the notations
introduced for AP, let job values X ′

j , j = 1�2� � � � �Nmax, be
any (not necessarily i.i.d.) random variables. For any n =
1�2� � � � �Nmax and m = 0�1� � � � �Nmax, define random vari-
ables ZNmax

m�n such that (1) Z
Nmax
0� n ≡ +�, for 1 � n � Nmax;

(2) ZNmax
m�n ≡ −�, for m > Nmax − n + 1; (3) Z

Nmax
1�Nmax

= X ′
Nmax

;
and (4) ZNmax

m�n = 	X ′
n ∨ E	Z

Nmax
m�n+1��n

 ∧ E	Z

Nmax
m−1� n+1��n
, for

1 � m � Nmax − n + 1, n � Nmax − 1, where �n, n =
1�2� � � � �Nmax −1, is a sigma-field over all possible realiza-
tions of vector �X ′

i �
n
i=1, n = 1�2� � � � �Nmax − 1, ∨ denotes

the maximum, and ∧ denotes the minimum.
For any n = 1�2� � � � �Nmax and m = 1� � � � �Nmax, the ran-

dom variable ZNmax
m�n represents the expected value of a job to

which the mth most skilled (mth best) worker is expected
to be assigned upon the arrival and assignment of job n. At
the time when job n with value x′

n arrives, the following
hold:

• If job n is assigned to the mth best worker, then the
value of ZNmax

m�n is equal to x′
n.• If job n is assigned to a more skilled worker than the

mth best, then the mth best worker becomes the �m − 1�th
best, and ZNmax

m�n is equal to E	Z
Nmax
m−1� n+1��n
.• If job n is assigned to a less skilled worker than the

mth best, then the mth best worker remains the mth best,
and ZNmax

m�n is equal to E	Z
Nmax
m�n+1��n
.

Theorem 2 shows that it makes sense to assign job n to a
more skilled worker than the mth best only if x′

n is greater
than the value of E	Z

Nmax
m−1� n+1 ��n
, and to assign job n to a

less skilled worker than the mth best only if x′
n is less than

the value of E	Z
Nmax
m�n+1 ��n
.

Theorem 2 (Kennedy 1986). Whenever job n = 1�
2� � � � �Nmax − 1 arrives, the line segment �−��+�� ⊂ �
is partitioned into Nmax − n + 1 random intervals defined
by the breakpoints +� � E	Z

Nmax
1� n+1 � �n
 � E	Z

Nmax
2� n+1 � �n


� · · · � E	Z
Nmax
Nmax−n�n+1 � �n
 � −�. Then, the optimal

assignment policy is to assign the nth job to the worker
with the mth highest success rate (available at the time
of the assignment) if x′

n lies in the mth highest of these
intervals, or, equivalently, if ZNmax

m�n = x′
n.
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Theorem 2 establishes the form of an optimal policy
for any problem, where the objective function is given
as the expectation of a summation of products. How-
ever, this result has seen limited use because finding
the conditional expectations of recursively defined ran-
dom variables ZNmax

m�n , 1 � m � Nmax − n + 1, n�Nmax − 1,
is computationally intractable in many cases, especially
when X ′

j , j = 1�2� � � � �Nmax are dependent. For any
n = 1�2� � � � �Nmax − 1, conditioning on the sigma-field �n

implies that the interval breakpoints depend on a sequence
of values of jobs 1 through n, and hence, for any such
sequence, the breakpoint values may be different. However,
if the nature of the dependency is as defined in (1), then
a closed form optimal assignment policy for AP can be
obtained.

Theorem 3. Whenever job n = 1�2� � � � �Nmax − 1 arrives
in AP, the optimal assignment policy is to assign the nth job
to the worker with the mth highest success rate (available
at the time the assignment decision has to be made) if x′

n

lies in the mth highest of the intervals, defined by the fixed
breakpoints

E	Z
Nmax
1� n+1�X ′

n > 0
�

E	Z
Nmax
2� n+1�X ′

n > 0
� � � � �E	Z
Nmax
Nmax−n�n+1�X ′

n > 0
�

These breakpoints are computed recursively:

E	Z
Nmax
m�n+1�X ′

n > 0


=
∑Nmax

i=n+1 P�N = i�∑Nmax
i=n P�N = i�

�Fn+1�E	Z
Nmax
m�n+2�X ′

n+1 > 0
�

·E	Z
Nmax
m�n+2�X ′

n+1 > 0
 +
∫ E	Z

Nmax
m−1� n+1�X′

n+1>0


E	Z
Nmax
m�n+2�X′

n+1>0

x dFn+1�x�

+ �1− Fn+1�E	Z
Nmax
m−1� n+1�X ′

n+1 > 0
��

·E	Z
Nmax
m−1� n+1�X ′

n+1 > 0
�� (2)

Proof. See e-companion.
The backward recursion (2) begins with the last �Nmax�th

job, for which the breakpoints are 0, +� (therefore, the
job is assigned to the best remaining worker available).
Next, the breakpoints for job (Nmax − 1) are 0, PNmax

/
�PNmax−1 +PNmax

�E	XNmax

, +�. To compute the breakpoints

for all Nmax jobs, proceed in the same manner, down to
job 1.

2.2. Infinite Case

The results of Theorems 1 and 3 can be extended to the
case in which the pmf for the number of jobs in BP has
infinite support. In this case, the proof of Theorem 1 is
unchanged. The rewards earned in BP and AP by mak-
ing assignments for any pair of sequences s and s′ (see
Theorem 1), respectively, remain the same, because every
such sequence has only a finite number of jobs. There-
fore, solving AP, where the pmf of the number of jobs has

infinite support, solves BP. Kennedy (1986) establishes the
form of an optimal policy for such problems, as summa-
rized in Theorem 4.

Theorem 4 (Kennedy 1986). Assume that E	supn �X ′
n�
 <

+�, and limn→+� X ′
n = 0. Then, an infinite sequence

�ZNmax
m�n �+�

Nmax=1 converges to a finite limit

Zm�n ≡ lim
Nmax→+�

ZNmax
m�n �

and Theorem 2 holds with the breakpoints expressed as +�,
E	Z1� n+1 ��n
, E	Z2� n+1��n
� � � � �−�.

Theorem 4 establishes that finding an optimal policy for
AP (and, using Theorem 1, BP), where the pmf for the
number of jobs has infinite support, can be approached by
considering a sequence of AP’s with fixed (bounded) Nmax,
and letting Nmax → +�. Note that the distributions of job
values in such APs (see (1)) depend on the pmfs of the
number of jobs, and hence it is necessary to define the
pmf PNmax of the number of jobs for each AP with Nmax =
1�2� � � �. To match the set-up described in Kennedy (1986),
the distribution of the value of job j = 1�2� � � � has to be
the same in each of those APs with Nmax = 1�2� � � �. To
satisfy this requirement, set P

Nmax
i = Pi/

∑Nmax
k=1 Pk for any

i = 1�2� � � � �Nmax, Nmax = 1�2� � � �.

2.3. Illustrative Example

Theorems 3 and 4 describe the necessary computations
involved in deriving optimal policies for SSAP with a ran-
dom number of jobs. An example is provided to illustrate
how these computations are performed.

Example. Given M = 4. P1 = P2 = P3 = P4 = 1/4.
Fj�x� = x, 0� x � 1, for j = 1�2�3�4.

For this example, Nmax = 4. Define b
Nmax
m�n+1 = E	Z

Nmax
m�n+1 �

X ′
n > 0
 for 1 � m � Nmax − n + 1 and 1 � n � Nmax − 1.

By (2),

n = 3� b4
1�4 =

∑4
i=4 Pi∑4
i=3 Pi

∫ +�

−�
x dF4�x� = 1/4

2/4
· 1
2 = 1

4
�

n = 2� b4
2�3 =

∑4
i=3 Pi∑4
i=2 Pi

(∫ 1/4

−�
x dF3�x� + �1− F3�b

4
1�4��b

4
1�4

)

= 2
3

·
(

1
32

+ 3
4

· 1
4

)
= 7

48
�

b4
1�3 =

∑4
i=3 Pi∑4
i=2 Pi

(
F3�b

4
1�4�b

4
1�4 +

∫ 1/4

−�
x dF3�x�

)
= 17

48
�

n = 1� b4
3�2 ≈ 0�1014� b4

2�2 ≈ 0�2266� b4
1�2 ≈ 0�422� �

The derived optimal policy can be compared with the pol-
icy that would be optimal if the number of jobs was not
random. According to an optimal policy for SSAP (Derman
et al. 1972) with N = 4, with job values distributed as in
the example, the interval breakpoints that determine the
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assignments for the third, second, and first arriving jobs
(respectively) would be

n = 3� a4
1�4 = 0�5� n = 2� a4

2�3 = 18
48

� a4
1�3 = 30

48
�

n = 1� a4
3�2 ≈ 0�3047� a4

2�2 = 0�5� a4
1�2 ≈ 0�6953�

The interval breakpoint values obtained in the example’s
solution are smaller, which means that workers with higher
success rates are used earlier than in the solution to the
respective instance of SSAP with the known number of
arrivals, at all assignment stages.

3. DSKP with a Random Number of Jobs
This section analyzes the DSKP with a random number
of jobs and presents a dynamic program that leads to the
derivation of an optimal assignment policy. The DSKP is
formally stated.
Given. Resource of capacity C available for allocation

to N jobs; pmf Pn for the number of jobs with independent
weights and values arriving sequentially, one at a time; for
each job j = 1�2� � � � �N , a joint cdf Fj�w�x� for the job
weight and value.
Objective. Find a policy �∗ that determines the assign-

ments, Aj ∈ �0�1�, j = 1�2� � � � �N , such that
∑N

j=1 Aj � 1,∑N
j=1 Ajwj �C, and E�∗

Pn� �Fj �
N
j=1

	
∑N

j=1 AjXj
 is maximized.

For any j = 1�2� � � � and c ∈ 	0�C
, let V c
j denote the

optimal accumulated reward from the allocation of resource
capacity c to jobs j� j + 1� � � � �N , and let EV c

j denote the
optimal conditional expected accumulated reward from the
allocation of resource capacity c to jobs j� j + 1� � � � �N ,
given that job j − 1 has arrived. By definition, EV C

1 =
E�∗

Pn� �Fj �
N
j=1

	
∑N

j=1 AjXj
. Theorem 5 establishes an assign-
ment policy that guarantees the optimal expected resource
allocation.

Theorem 5. Suppose that the remaining resource capacity
is c, and job j with weight wj and value xj arrives. Then,
it is optimal to set

Aj =
⎧⎨
⎩
1 if xj + EV

c−wj

j+1 �EV c
j+1 and wj � c

0 if xj + EV
c−wj

j+1 < EV c
j+1 or wj > c�

(3)

Note that the quantity xj + EV
c−wj

j+1 depends on the
parameters (weight and value) of job j . These parameters
are known at the time the assignment decision for job j is
to be made. Therefore, each optimal assignment decision,
described by (3), is determined by EV c

j+1 and EV
c−wj

j+1 .
Theorem 5 follows from the fundamental argument of

DP: Each assignment must maximize the sum of an imme-
diate reward and the expected future reward. Note that rule
(3) is of the same form as in Papastavrou et al. (1996),
except that EV c

j , j = 1�2� � � �, c ∈ 	0�C
, are conditional.
This allows one to include the consideration of the pmf of

N into the DP formulation and hence determine the opti-
mal allocation policy for the case with a random number
of jobs.
The expected values EV c

j , j = 1�2� � � �, c ∈ 	0�C
 can be
computed using a DP recursion. However, the recursion and
its boundary conditions depend on the number of arriving
jobs, which is random. First, the case where the pmf of N
has finite support is considered. Then the result is extended
to the case where the pmf of N has infinite support.

3.1. Finite Case

Theorem 6. The optimal expected accumulated reward
EV C

1 can be computed using the recursion

EV c
j =

∑Nmax
i=j Pi∑Nmax

i=j−1 Pi

· [P�Wj � c�Rj + EV
c−Wj

j+1 �EV c
j+1�

×E
[
Rj + EV

c−Wj

j+1 �Wj � c�Rj + EV
c−Wj

j+1 �EV c
j+1

]
+ 	P�Rj + EV

c−Wj

j+1 < EV c
j+1�Wj � c�

+ P�Wj > c�
EV c
j+1

]
� (4)

with boundary conditions EV c
j = 0 for any c and j �Nmax.

Proof. See e-companion.

3.2. Infinite Case

The result of Theorem 5 can be extended to the case where
the pmf for the number of jobs in DSKP has infinite sup-
port. For any j = 1�2� � � � � c ∈ 	0�C
, and Nmax = 1�2� � � � �
let EV c

j �Nmax� denote the optimal conditional expected
accumulated reward from the allocation of resource capac-
ity c to jobs j� j + 1� � � � �Nmax, given that job j − 1 has
arrived, in the DSKP with the pmf of the number of jobs
P

Nmax
i = Pi/

∑Nmax
k=1 Pk for any i = 1�2� � � � �Nmax.

Theorem 7. Assume that B ≡ E	supj �Xj/Wj �
 < +�, and
P	N < +�
 = 1. Then for any j = 1�2� � � � and c ∈
	0�C
, the infinite sequence �EV c

j �Nmax��
+�
Nmax=1 converges

to the finite limit EV c
j ��� ≡ limNmax→+� EV c

j �Nmax�, and
Theorem 5 establishes an optimal policy for DSKP, where
the pmf of the number of jobs has infinite support, with
EV c

j replaced by EV c
j ���, j = 1�2� � � � � c ∈ 	0�C
.

Proof. See e-companion.
Theorem 7 establishes that an optimal policy for DSKP,

where the pmf of the number of jobs has infinite sup-
port, can be obtained by sequentially solving a sequence
of DSKPs with finite support. First, consider only two
jobs, then three, and so on. Then evaluate the limits
limNmax→+� EV c

j �Nmax�, j = 1�2� � � � � c ∈ 	0�C
. Finally,
apply Theorem 5 to establish an optimal resource allocation
policy.
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4. Conclusion
This paper analyzes SSAP and DSKP under the assumption
that the number of arriving jobs is random and follows
a given discrete distribution. Optimal assignment policies
with proofs are provided. Conditioning arguments are key
to the solutions to both problems. Note that the complexity
of the proposed algorithms is the same as the complexity of
the original algorithms introduced by Derman et al. (1972)
and Papastavrou et al. (1996).
Note that DSKP, where the pmf of the number of jobs

has infinite support, can be solved by alternative methods
such as a total reward Markov decision process. Further
research is required to assess and compare the performance
of these methods. Other challenges include discrete sequen-
tial assignment problems in which job values are depen-
dent on each other and/or the workers to whom the jobs
are assigned. Also, the proposed models assume that the
sequences in which the jobs with their respective value cdfs
arrive are fixed and known. Identifying optimal resource
allocation policies for the cases in which such sequences
could be random is another hard yet important problem.

5. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal.
informs.org/.

Acknowledgments
This research has been supported by the U.S. Air Force
Office of Scientific Research under grant FA9550-07-1-
0232, and the National Science Foundation under grant
CMMI-0900226. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the

United States Government, the U.S. Air Force Office of
Scientific Research, or the National Science Foundation.

References
Albright, S. C. 1974. Optimal sequential assignments with random arrival

times. Management Sci. 21(1) 60–67.
Derman, C., G. J. Lieberman, S. M. Ross. 1972. A sequential stochastic

assignment problem. Management Sci. 18(7) 349–355.
Derman, C., G. J. Lieberman, S. M. Ross. 1975. A stochastic sequential

allocation model. Oper. Res. 23(6) 1120–1130.
Kennedy, D. P. 1986. Optimal sequential assignment. Math. Oper. Res.

11(4) 619–626.
Kleywegt, A. J., J. D. Papastavrou. 1998. The dynamic and stochastic

knapsack problem. Oper. Res. 46(1) 17–35.
Kleywegt, A. J., J. D. Papastavrou. 2001. The dynamic and stochas-

tic knapsack problem with random sized items. Oper. Res. 49(1)
26–41.

Lu, L. L., S. Y. Chiu, L. A. Cox Jr. 1999. Optimal project selection:
Stochastic knapsack with finite time horizon. J. Oper. Res. Soc. 50(6)
645–650.

McLay, L. A., S. H. Jacobson, A. G. Nikolaev. 2009. A sequential stochas-
tic passenger screening problem for aviation security. IIE Trans. 41(6)
575–591.

Nakai, T. 1986. A sequential stochastic assignment problem in a partially
observable Markov chain. Math. Oper. Res. 11(2) 230–240.

Nikolaev, A. G., S. H. Jacobson, L. A. McLay. 2007. A sequential stochas-
tic security system design problem for aviation security. Transporta-
tion Sci. 41(2) 182–194.

Papastavrou, J. D., S. Rajagopalan, A. J. Kleywegt. 1996. The dynamic
and stochastic knapsack problem with deadlines. Management Sci.
42(12) 1706–1718.

Prastakos, G. P. 1983. Optimal sequential investment decisions under con-
ditions of uncertainty. Management Sci. 29(1) 118–134.

Righter, R. L. 1987. The stochastic sequential assignment problem with
random deadlines. Probab. Engrg. Inform. Sci. 1(2) 189–202.

Sakaguchi, M. 1972. A sequential assignment problem for randomly arriv-
ing jobs. Rep. Statist. Appl. Res. 19 99–109.

Sakaguchi, M. 1983. A sequential stochastic assignment problem
with an unknown number of jobs. Mathematika Japonica 29(2)
141–152.

Su, X., S. A. Zenios. 2005. Patient choice in kidney allocation: A sequen-
tial stochastic assignment model. Oper. Res. 53(3) 443–455.

Van Slyke, R., Y. Young. 2000. Finite horizon stochastic knapsacks with
applications to yield management. Oper. Res. 48(1) 155–172.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
8.

25
.4

.7
7]

 o
n 

31
 J

an
ua

ry
 2

02
4,

 a
t 1

8:
04

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 


