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I. INTRODUCTION

Greater autonomy is being asked of robots than ever before.
Modern applications demand robots to ‘just work’ without
human intervention in increasingly dynamic and uncertain
environments. I am interested in achieving such a higher level
of autonomy for robots under uncertainty.

Significant progress has been made toward robot autonomy,
such that many commercial systems demonstrate reasonable
adaptation to uncertain environments. Such adaptation is pre-
dominantly driven by the perception-action cycle, or the sep-
aration principle model, illustrated in Fig. 1a. In this model,
perception and decision-making are separate modules that treat
each other as independent black boxes. Perception processes
sensor data to produce an environmental representation, which
is subsequently consumed by decision-making to produce an
action plan. Enhancing autonomy is achieved by improving
these two modules in terms of robustness to uncertainty or
adding capabilities such as higher-level user inputs. Can we,
then, eventually create a truly autonomous robot by allowing
for all practical ranges of uncertainty and user inputs?

I believe this is not the case, because an autonomous system
based on the separation principle is inherently adaptive and
hence reactive. Because decision-making treats perception as
a black box, even non-myopic planners are rendered myopic
in the sense that it does not account for how different actions
lead to resolution of uncertainty at varying degrees. Instead,
uncertainty is simply avoided through risk aversion (e.g., [10]),
which is further exacerbated by perception modules generating
conservative predictions of the environment in unseen areas
that are of interest to the planners (e.g., [21, 29, 1]). I believe
that the next generation of robots should embrace and explore
environmental uncertainties, rather than simply avoiding it.

My research proposes to overcome such limitations of adap-
tive autonomy through robotic prospection [14]. The concept
of prospection originates from cognitive psychology, where
it refers to the generation and evaluation of possible future
scenarios and outcomes during decision-making [7, 24]. That
is, prospection equips an agent with foresight on possible
future environmental states and outcomes.

To realise prospection in robot autonomy, I view the
two main elements to be: 1) prospective planning and 2)
prospective perception, illustrated in Fig. 1b. The prospective
perception problem asks to generate useful predictions about
the unseen environment given limited onboard sensor data,
informed by prior data or domain knowledge. Prospective
planning asks to devise a strategy for choosing control actions
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Fig. 1. Comparison of (a) the standard and (b) the proposed autonomy
architectures. Whereas the standard architecture passively processes sensory
data into environmental estimate and subsequently into action, the planning
module in the proposed architecture takes perception into account, and predicts
unseen areas with domain knowledge or data.

that achieve a given task while gathering relevant information
in doing so, through the balance of information gathering
(exploration) and task completion (exploitation). In other
words, prospective planning must consider what task-relevant
information can be gathered from different actions, and how
to balance this with task completion.

This perspective unifies several existing and emerging
ideas. Prospective planning considers the effect of measure-
ments as do partially observable Markov decision processes
(POMDPs) [27, 13], but aims to side-step the need for
exhaustive sensor simulation in POMDPs through the use
of acquisition functions for exploration-exploitation trade-
off, similar to Bayesian optimisation (BO) [25, 28] and
mutli-armed bandits (MABs) [2, 6]. Meanwhile, much more
general problem settings than BO and MABs are enabled
through the use of information-theoretic quantities as used
in active perception [12, 8, 4]. Some recent work already
implements prospective perception in applications such as
indoor modelling [22, 26]. Combination of these frameworks
with prospective planning will be beneficial in terms of not
only accurate feasibility or cost computation, but also better
evaluation of the quality of measurements.

I anticipate that robotic prospection will form the basis of
the next generation of robot autonomy frameworks, because
proactivity will be necessary for upcoming application of
robotics. In what follows, I detail the progress and results thus
far, which support the claimed benefits of robotic prospection.

II. PROGRESS TO DATE

Throughout my PhD, I developed a number of tools for
prospective perception and planning in a general Bayesian
setting. Perception is modelled as a Bayesian inference of
some environmental parameters of arbitrary class (e.g. discrete



or continuous), and the robot’s task is modelled by a reward
function dependent on these environmental parameters. Then,
the prospective perception problem can be formalised as that
of developing useful predictive priors on these environmental
parameters, and the prospective planning problem as devising
a strategy that outperforms the conventional expected reward
maximisation one (i.e. expectimax).

A. Prospective Planning

For prospective planning in the most general Bayesian
setting, I developed the mutual information upper confidence
bound (MI-UCB) strategy in [17]. MI-UCB is an exploration-
exploitation trade-off strategy that approximately maximises
the posterior expected reward over a horizon given any
possible future measurements, by instead maximising the
weighted sum of Shannon information gain and prior expected
reward before measurements. I have shown that the weighted
sum of information gain and prior expected reward forms a
valid probabilistic UCB on the posterior expected reward of
a trajectory for any future measurements and any class of
environmental parameters, whether discrete and continuous.
This allows no-regret maximisation of the future posterior
expected reward over a horizon without knowing the values
of measurements ahead.

The weighted sum structure of the MI-UCB allowed scaling
prospective planning to non-myopic coordination of a hetero-
geneous multi-robot system comprising scout- and task-robots,
each equipped with sensing (i.e. information gathering) and/or
task (i.e. reward-seeking) payloads. I demonstrated MI-UCB in
a high-fidelity simulation of a heterogeneous multi-drone team
performing a search-and-capture task [18], and showed that it
outperforms the standard approach of maximising expected
reward under current environmental belief by up to 134% in
terms of targets captured.

I also studied special cases of prospective planning with a
greater problem structure. Most recently, I considered complex
tasks specified in temporal logic, which can specify tasks such
as “visit target A and target B in any order” or “avoid target
A until visiting target B”. I proposed random signal temporal
logic (RSTL) [19] to model such tasks with environmental
uncertainty, and developed specialised acquisition functions
for task-relevant information that outperform the general MI-
UCB with up to two-fold reduction in task failure [9].

B. Prospective Perception

To develop predictive priors for prospective perception,
my work thus far focused on incorporating physical laws of
nature into Bayesian methods. Specifically, I devised several
specialized Gaussian process (GP) regression schemes that
satisfy governing partial differential equations (PDEs) by
construction. This includes GPs satisfying 1) incompressibility
constraint for ocean current estimation [16, 31], 2) advection-
diffusion PDEs for chemical plumes in oceanic flows [15],
and 3) Eikonal PDE for signed distance fields in obstacle
mapping [34]. All of these perception algorithms exhibit much
better prediction of unseen areas given limited measurements

compared to conventional priors owing to the domain knowl-
edge, which is useful for classical planning in many practical
applications such as indoor and oceanic navigation [5, 35, 30].
More interestingly, the combination of prospective perception
in GPs with prospective planning via BO [28] exhibited intelli-
gent exploration-exploitation in plume source localisation [15].

III. ONGOING AND FUTURE WORK

A. Prospection as a Framework for Autonomy

I aim to establish robotic prospection as a go-to framework
for robotic systems. This will be an important step in robotics
research toward proactive autonomy in uncertain environ-
ments. MI-UCB [17] already provides a good starting point, as
it only requires the computation of Shannon information gain
and prior expected reward regardless of the type or represen-
tation of the environmental uncertainty. I aim to apply MI-
UCB in a greater variety of applications with environmental
uncertainty, and welcome suggestions from collaborators.

Alternative formulations may be beneficial in doing so. MI-
UCB yields probabilistic guarantees owing to its Bayesian
foundation; however, deterministic error bounds and guaran-
tees are often more useful than probabilistic ones in planning.
To this end, I collaborated on deriving and working with
deterministic worst-case error bounds in important perception
problems such as SLAM [3] and spatial field reconstruc-
tion [32]. A part of my research will examine translating these
bounds to acquisition functions for prospective planning.

B. Inductive Bias

My research on prospective perception has focused on
imposing laws of nature that are always true; however, also
useful would be to incorporate knowledge that is usually true,
as long as it is evidenced by data. In other words, inductive
bias could be as useful as laws of nature. This was explored
in [33], where we propose a learnt model of topological
information to accelerate trajectory prediction of crowds.

Deep generative models have already shown excellent ap-
plicability for modelling inductive bias in applications such as
indoor structures [36, 22, 26]. The missing piece for prospec-
tion is the evaluation of uncertainty, quality of measurements
and relevance to task at hand. In the simplest case, tractable
computation of Shannon information in these models will
allow using MI-UCB for prospective planning. I welcome
collaborators in addressing this gap.

C. Multi-Robot Systems

Multi-robot systems be increasingly important in large-
scale applications. Robotic prospection offers exciting insights
for multi-robot coordination by viewing the actions of other
teammates as a parameter to estimate, as is done in the control-
as-inference literature [11, 20, 23]. In the context of multi-
robot systems, this perspective will allow coordination with
sparse or planned communication from which the teammates’
actions are inferred. I am currently working on these ideas for
physical human-robot collaboration in defence applications.
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