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An Efficient Sampling-Based Method for Online
Informative Path Planning in Unknown Environments

Lukas Schmid , Michael Pantic , Raghav Khanna , Lionel Ott , Roland Siegwart , and Juan Nieto

Abstract—The ability to plan informative paths online is essential
to robot autonomy. In particular, sampling-based approaches are
often used as they are capable of using arbitrary information gain
formulations. However, they are prone to local minima, resulting in
sub-optimal trajectories, and sometimes do not reach global cover-
age. In this letter, we present a new RRT*-inspired online informa-
tive path planning algorithm. Our method continuously expands a
single tree of candidate trajectories and rewires nodes to maintain
the tree and refine intermediate paths. This allows the algorithm
to achieve global coverage and maximize the utility of a path in a
global context, using a single objective function. We demonstrate
the algorithm’s capabilities in the applications of autonomous in-
door exploration as well as accurate Truncated Signed Distance
Field (TSDF)-based 3D reconstruction on-board a Micro Aerial
Vehicle (MAV). We study the impact of commonly used information
gain and cost formulations in these scenarios and propose a novel
TSDF-based 3D reconstruction gain and cost-utility formulation.
Detailed evaluation in realistic simulation environments show that
our approach outperforms sampling-based state of the art methods
in these tasks. Experiments on a real MAV demonstrate the ability
of our method to robustly plan in real-time, exploring an indoor
environment with on-board sensing and computation. We make
our framework available for future research.

Index Terms—Motion and path planning, aerial systems,
perception and autonomy, reactive and sensor-based planning.

I. INTRODUCTION

IN RECENT years, mobile robots and in particular, MAVs
have shown increasingly high levels of autonomy and can be

employed in an ever-growing number of applications. A crucial
component to leveraging their full potential is the ability to
autonomously plan and execute informative paths in a priori
unknown environments.

In particular, sampling-based methods are widely used, as
various information gains can be directly computed from the
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Fig. 1. Qualitative comparison of our method (left) and RH-NBVP [1] (right)
on a real MAV. The trajectories are colored from red at t = 0 min to green at
t = 3 min. Our method explores the full room and passes the obstacle in the
bottom center, while RH-NBVP leaves a hole in the floor. Our gain focuses on
areas of high expected error, leading the MAV to revisit surfaces and resulting
in better resolved corners and flatter walls.

map without imposing additional constraints on the choice of
gain formulation. These methods have proven successful in
a variety of scenarios, including volumetric exploration [1],
surface inspection [2], object search [3], weed classification [4],
infrastructure modeling [5], and 3D reconstruction [6].

In the informative path planning (IPP) problem, a robot is
required to generate a path that maximizes the information
gathered, i.e. maximizes an objective function, about its envi-
ronment. To solve the IPP problem when the environment is
unknown, robots are required to identify promising paths online
based on the limited information available at each time step.
This requires paths to be continuously adapted to the current
map. Furthermore, the robot needs to reason over a potentially
large map space to escape local minima and strive for globally
optimal plans. In many cases, both tasks need to be performed
with the limited computational resources available on-board the
robot. Since the operational time of mobile robots is typically
limited by the battery life, efficient computation of informative
trajectories is of major importance.

Traditional sampling-based online IPP approaches, based on
repeatedly expanding a rapidly-exploring random tree (RRT)
[1], [3], [7]–[9], iteratively sample feasible paths from the cur-
rent robot pose, storing them in a tree structure, and execute
the beginning of the best branch. However, these approaches
have two important disadvantages. First, large parts of the tree
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are discarded every iteration, as either only the best branch
is executed or the tree is expanded from scratch. This can be
computationally expensive; for example, computing volumetric
information gains can account for up to 95% of a planner’s
run-time. Second, due to the limited horizon look-ahead, they
tend to select locally optimal solutions, resulting in sub-optimal
paths or even getting stuck in a dead-end.

To address these challenges, we adapt ideas from optimal mo-
tion planning to the online informative path planning problem.
Similar to the RRT* [10] and real-time-RRT* [11] algorithms,
we propose the rewiring of nodes according to their utility. In this
way, non-executed nodes and their sub-trees are kept alive. In
combination with an adaptive updating policy, an ever-growing
tree can be expanded and maintained while traversing it. This
allows the algorithm to use a single objective function instead of
switching operation modes, maintaining a large tree for global
coverage, and simultaneously refining the planned trajectory.

We evaluate the proposed approach in two representative
applications, (i) exploration of indoor environments, and (ii)
accurate TSDF-based 3D reconstruction of buildings. Because
the algorithm is strongly governed by a single objective function,
we study the impact of commonly used information gains and
costs in these scenarios. To address the problems identified
from this, we present a gain formulation selecting viewpoints
for accurate TSDF-based 3D reconstruction. Additionally, we
introduce a parameter-free method to combine costs and gains
into a total utility value. Quantitative evaluation is carried out
in complex and photo-realistic simulation environments, while
experiments on a flying robot validate the method in the physical
world. This work makes the following contributions to the state
of the art:
� We present a new RRT*-inspired online IPP algorithm, that

continuously expands and maintains a single tree, reaching
global coverage and refining trajectories to maximize their
utility.

� We propose an information gain for accurate TSDF-
based 3D reconstruction under uncertainty, as well as an
efficiency-based utility formulation that balances gain and
cost without additional tuning.

� The algorithm is open-sourced with a modular framework
for sampling-based online IPP design.1 We also make the
simulation environment and scenarios available for bench-
marking and future research.2

II. RELATED WORK

Online planning of informative paths in unknown environ-
ments has attracted a lot of interest, primarily in the field of
exploration planning. Here, the objective is to map unknown
space in a region of interest completely and quickly. Although
there exists a rich variety of approaches [12], the majority
can be split into frontier-based and sampling-based methods.
Frontier-based methods [13] identify the boundaries between
known and unknown space in the map and repeatedly choose

1https://github.com/ethz-asl/mav_active_3d_planning
2https://github.com/ethz-asl/unreal_cv_ros

one such frontier as the goal, eventually resulting in complete
exploration. This approach has, among others, been extended
to high speed flight for fast exploration [14], but is difficult to
adapt to other tasks. Sampling-based methods typically sample
view configurations in a Next-Best-View (NBV) fashion [1].
These have the large advantage of allowing any kind of gain
formulation [3], [9]. For this reason, we focus on sampling-based
methods in this work.

Recent approaches leverage the capabilities of sampling-
based methods and employ additional planning stages to escape
local minima or address sub-optimal trajectories. Corah et al.
[15] generate a tree of motion primitives in a fixed horizon fash-
ion to identify promising local trajectories. Areas of potential
information gain in the map are approximated by a global library
of uniformly sampled views. Local minima are then escaped
by penalizing local trajectories that end far from library views
of a fixed minimum gain. However, the computed gains are
not used to find better global targets. Another approach [16]
utilizes a frontier method to detect global goals and supplements
these with motion primitives for local exploration. The most
promising trajectory is then refined in a gradient-based manner
to maximize their information objective. Meng et al. [17] present
a two stage approach that samples viewpoints near frontiers as
candidates for coverage. To account for the global quality of
the exploration path, viewpoints are cast into a fixed-start open
traveling salesman problem to obtain a globally optimal traversal
path. However, to remain tractable the available viewpoints
are pruned and the trajectory lengths are approximated using
a heuristic gain formulation.

A different family of approaches focuses on expanding an
RRT of viewpoints, as introduced by Bircher et al. [1]. In a re-
ceding horizon (RH) fashion, a tree of views is sampled, and the
first node of the best branch is executed. To escape local minima
more efficiently, Witting et al. [7] keep track of the planner’s
history as potential areas for reseeding the tree. Similarly, Selin
et al. [18] use the RH-NBV planner for local exploration and a
frontier-based method for global goal selection.

While volumetric exploration algorithms are able to fully
discover and reconstruct large outdoor structures [1], [17], [18],
more specialized surface-based methods exist. Yorder et al. [5]
introduce the concept of surface frontiers. Assuming a single
connected object of interest, detecting unknown voxels next to
surfaces results in full coverage. In a NBV fashion, informative
paths are planned, where the sampling space for viewpoints
is significantly reduced by uniformly sampling on an offset
transform of the currently available model. An approach that
accounts for the surface quality of the model is presented in [6].
While RRT-based volumetric exploration is used to identify goal
poses, intermediate paths are refined to inspect surfaces and
explore surroundings. As a measure of quality, the confidence
of a surface is defined as the average of the TSDF weights of
neighboring points. For points below a threshold, viewpoints
that can observe the low confidence point are sampled outwards
and added to the set of candidates. However, due to the constant
TSDF update weight used, high weights do not necessarily trans-
late into high quality and no metric accuracy analysis is provided.
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Fig. 2. Planner overview. The tree is expanded until the current trajectory has
finished execution. The tree is then updated to the new map and non-executed
nodes are rewired to keep them alive.

The approaches described above can escape local minima by
utilizing a second planning stage. However, this requires them
to switch operation modes, and the notion of frontiers may not
be meaningful for arbitrary information gain formulations. In
contrast to this, we propose the expansion of a single large
tree, allowing it to work with a single objective function and to
consider the utility of both local and global paths simultaneously.

III. PROPOSED ALGORITHM

The central idea of our approach is to continuously expand,
maintain, and improve a single trajectory tree while simulta-
neously executing it. An overview of the algorithm is given in
Fig. 2. In a receding horizon fashion, the tree is expanded until
the current node has been completed. The trajectory of the best
adjacent node is then requested and the tree updated. Because the
tree, i.e. the look-ahead, is generally kept alive, the next node is
requested immediately, resulting in an adaptive horizon length.

A. Tree Structure

We represent the tree G = (V, E) as a set of vertices V =
{Vi}i=1,...,n and connectivity information E , with the root lo-
cated at the robot’s current position. Each node Vi consists of an
associated trajectory τ , gain g, cost c, and value v.

Vi = {τi, g(τi), c(τi), vi} (1)

We use the shorthand notations g(Vi), c(Vi), v(Vi), and τ(Vi)
to refer to the quantities associated with node Vi. The decom-
position into gain, cost, and value allows for separate updates
of these quantities, enabling efficient maintenance of large trees
by caching or storing values until they change. In addition, the
following criteria need to be met: the gain g(Vi) can be any
function that depends only on the pose at the end of the trajectory
τ(Vi), such as the number of observable voxels. The gains are
assumed to be mutually independent, not accounting for e.g.
frustum overlap. The cost c(Vi) is required to be an intrinsic
property of Vi, for example the length of the associated trajec-
tory. The value v(Vi) = f(g(V1), . . . , g(Vn), c(V1), . . . , c(Vn))
fuses cached gains g and costs c into the total utility of a node.

When searching for the ‘next-best’ node, all nodes are consid-
ered, and the one containing the highest value v in its sub-tree is

used. Any definition of g, c, and v adhering to these conditions is
admissible, allowing the algorithm to maximize an application-
specific objective. Specific choices of g, c, and v are further
discussed in Section IV.

B. Tree Expansion

To expand the tree, a new viewpoint is sampled. Although
any sampling procedure is allowed, we use a two stage ap-
proach to guarantee sufficient local coverage and reachability of
viewpoints. If less than nlocal viewpoints are within a distance
rlocal of the robot, the new point is sampled from a sphere with
radius rlocal. Otherwise we use the method of [1] to sample a
global point. To ensure reachability and encourage viewpoints
near exploration boundaries, a linear path is extended from the
nearest neighbor node in the tree towards the sampled point,
until either a maximum edge length lmax or a safe distance to
inaccessible space is reached. Because the gain only depends
on the viewpoint, it can now be computed and only needs to be
updated when the map is modified.

To add the new node to the tree, we perform an operation
similar to the RRT* algorithm [10]. Instead of connecting the
viewpoint to its nearest neighbor node, as done in standard RRT,
we try to connect the viewpoint to all nodes within lmax and select
the parent node that maximizes the value of the new node. The
value can be checked efficiently, as previously computed gains
and costs do not change. Additionally, the remaining neighbors
are rewired to the newly added node if this increases their value,
thereby refining the current tree.

C. Tree Updating

Similar to [11], when a new node is executed, that node
becomes the new root of the tree, and its gain, cost, and value are
set to zero. To prevent loss of the non-executed branches, they
are rewired, if possible, to nearby nodes that remain connected
to the root. Opposed to [11], due to the high cost of the gain
computation, we keep the entire tree alive. If rewiring is not
successful, the old root is re-sampled with its start pose as
viewpoint to guarantee that nodes can be rewired unless the
map has changed to render nodes inaccessible. To update the
tree, we make use of the previously introduced node structure
(1). Since the costs are intrinsic to each node, they do not need
to be updated. The gains only need to be updated in areas where
the map has changed. We model this behavior by only updating
nodes within a maximum distance rupdate of the robot’s current
position and whose gain has not yet reached zero. Because
the value is a function of the cached gains and costs, it can
be updated efficiently in a single pass through the tree. As the
value of a node can change drastically during updating, the
tree is re-optimized by performing a rewiring step for every
node in a breadth-first manner. The maximum tree size is thus
implicitly governed by the updating computational cost and the
computational resources available. As more segments are only
sampled in the time remaining after updating, the algorithm aims
to expand the largest tree that can be kept fully updated with the
computational resources available.
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IV. COST-UTILITY FORMULATIONS

The presented algorithm shapes the tree to maximize the
value v and is thus strongly governed by the choice of g(Vi),
c(Vi), and v(Vi). In the following, we present a gain formulation
for the application of accurate TSDF-based 3D reconstruction
under uncertainty in sensing and state estimation. We address the
problem of how to combine general information gains and costs
into the total utility v and present a parameter-free efficiency
inspired value formulation.

A. TSDF-Based 3D Reconstruction Gain

A TSDF map typically consists of a voxel grid, where each
voxel m contains a distance d(m) and a weight w(m). This
representation has the advantage that surface models can be
directly created from the map, e.g. using the marching cubes
algorithm [19]. In addition, the weights can be treated as an
uncertainty measure.

Commonly used 3D sensors, such as the Microsoft Kinect or
Intel Realsense, have measurement noise that scales approxi-
mately quadratically with depth z [20], [21]. Thus, we use the
quadratic weight proposed in [22] to minimize sensing errors.

win(m) = z−2. (2)

The error introduced by uncertainty in the state estimation is
more difficult to estimate, since it is highly dependent on the
shape of the surface. The risk of mapping a point onto an
unrelated voxel, introducing potentially large errors, increases
greatly with the distance between the measured point and its
true location. Assuming an unknown offset in the robot pose,
this distance is typically dominated by the orientation-related
error, which scales linearly w.r.t. z. To minimize this risk we
employ the same quadratic penalty as a heuristic. Utilizing the
following update rule for the map distance d(m),

dnew(m) =
w(m)d(m) + win(m)din(m)

w(m) + win(m)
, (3)

we propose to use the impact a view has on the map as the
information gain. Combining (2) and (3) and accounting for
multiple rays traversing a voxel, the impact factor η(m) is
computed as:

η(m) =
1

1 + z2w(m)/Nrays(m)
, (4)

where the number of rays intersecting a voxel Nrays(m) de-
pends on the employed camera and is usually also proportional
to z−2.

Similar to [5], we focus on surfaces, evaluating the impact
factor only for observed surfaces S and unknown voxels near
observed surfaces U . The resulting information gain grec(ξ) of
a viewpoint ξ is thus given by,

grec(ξ) =
∑

m∈Vis(ξ)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, if m ∈ U ,
η(m)− ηmin

1− ηmin
, if m ∈ S and

η(m) > ηmin,

0, otherwise,

(5)

where Vis(ξ) is the set of voxels visible from ξ and ηmin is
a cut-off value for low impact factors. The resulting gain is
simultaneously a quality and an efficiency measure. Intuitively
this gain favors viewpoints that observe new areas and improves
previously mapped voxels.

B. Global Normalization Value

Oftentimes, part of a task’s objective is to execute it as quickly
as possible. Therefore, we use the expected execution time t as
the cost of a node Vi, i.e.:

c(Vi) = tend(τ(Vi))− tstart(τ(Vi)) (6)

The value function v(Vi) addresses the issue of how to connect
gains and costs to arrive at a measure of total utility. Commonly
used value formulations such as exponential vexp(Vi) [1], [6],
[18] or linear vlin(Vi) [5], [12], [15] penalties,

vexp(Vi) = v(parent(Vi)) + g(Vi) exp (−λc(Vi)), (7)

vlin(Vi) = v(parent(Vi)) + g(Vi)− αc(Vi), (8)

have several disadvantages. vexp is strictly increasing, favoring
long sub-trees even when subsequently executed nodes might
be sub-optimal. Furthermore, both require careful tuning of the
parameters λ and α. To address these two issues, we use the
notion of efficiency, i.e. the accumulated gain per cost, as a
central idea for the value. Instead of greedily maximizing the
efficiency of each node, we account for the global context of
each node by defining the global normalization value vGN (Vi)
as,

vGN (Vi) = max
Vk∈subtree(Vi)

∑
Vl∈R(Vk)

g(Vl)∑
Vl∈R(Vk)

c(Vl)
, (9)

where subtree(Vi) indicates the tree originating from and in-
cluding Vi and R(Vi) is the sequence of nodes connecting Vi to
the root of the tree.

V. IMPLEMENTATION DETAILS

The presented algorithm and utility formulations are imple-
mented using the mav_active_3d_planning package,1 a modular
IPP design framework we open-source with the algorithm. While
Voxblox [22] is used as the map representation any other TSDF
implementation could be used. We furthermore perform yaw
optimization as presented in [7] to compute gains. The entire
yaw spectrum is divided into sections, spanning 30◦ in our case,
and the gain is computed for each section. The yaw maximizing
the total gain of a node is then greedily selected. We use a
constant acceleration model for position and yaw to estimate the
execution time of future trajectories and polynomial trajectory
optimization [23] to the executed paths.

A. Iterative Ray Casting

Because the majority of computation time is spent evaluating
the gain of a viewpoint, an efficient ray casting method, which
we call iterative ray casting, is used. The initial ray spacing
is reduced to match the voxel size s at maximum ray length.
The cast rays add all traversed voxels to a set of visible voxels.
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Fig. 3. Simulation environment overview.

Subsequent rays only start where their lateral distance to the
previous rays is s. This reduces redundant voxel checks in areas
of high ray density, speeding up computation by an additional
233% in our experiments, while still detecting all voxels. As
shown in [18], [24], computation can be further sped up by
approximating the gain computation. When multiplying sray
with a sub-sampling factor fsub, the density of detected voxels
per volume and per surface decreases proportional to f2

sub.
Because the planner selects nodes based on a relative value,
no further compensation is required.

VI. SIMULATION ENVIRONMENT

Active path planning tasks require a simulator rather than
a dataset, thus a realistic simulation environment is advanta-
geous. We base our simulated world on the Unreal Engine,3 a
game engine capable of rendering photo-realistic scenes. The
behavior of a MAV is simulated using the Robot Operating
System4 (ROS). An overview of the simulator is given in Fig. 3.
We use voxblox [22] as the map representation, the control
hierarchy presented in [25] is used for trajectory tracking, and
the Gazebo-based RotorS simulator [26] accurately models the
MAV’s physics. The perception interface2 is based on the Unre-
alCV computer vision plugin [27] and is optimized for robotic
applications such that it runs in real time at 3 Hz and checks
for collisions in the simulated world. To account for sensing
uncertainty, a Gaussian depth error with quadratic scaling [20],
[21] is added to the ground truth point cloud, i.e.:

zsim = z +N (μ(z), σ(z)), μ(z) = σ(z) = 0.0024z2. (10)

Uncertainty in state estimation is modeled by a bounded random
walk, introducing an error in position within a sphere of radius
5 cm, roll and pitch within ±1.5° and yaw within ±5°. The
values are chosen as best estimates of errors achievable by state
of the art systems such as RTK-GPS.

Exploration is evaluated in a maze scenario of 40 m× 40 m×
3 m, while for 3D reconstruction, an urban environment of size
40 m × 40 m × 12 m is used. Particularly challenging areas are
the trees occluding the left side, narrow passages on the right,
and the filigree geometry encountered on the roof windows. We
make the simulator and scenarios available for benchmarking
and future research.

VII. EXPERIMENTS

We compare our method to the receding horizon NBV planner
(RH-NBVP) [1] and the more recent autonomous exploration

3https://www.unrealengine.com/en-US/
4https://www.ros.org/

TABLE I
PARAMETERS USED THROUGHOUT ALL EXPERIMENTS

TABLE II
PARAMETERS OF THE PROPOSED PLANNER

planner (AEP) [18]. Both methods were shown to perform well
in indoor exploration as well as volumetric reconstruction of a
bridge and power plant building, respectively. For all experi-
ments, identical system constraints, tree edge length, and TSDF
update weights [22] were used (Table I). Additional parameters
of our method are listed in Table II.

Two independent metrics are used to evaluate the performance
of the methods: the exploration ratio, which captures the percent-
age of the environment observed, and average reconstruction er-
ror, which measures the average error between the reconstructed
surface and ground truth. The exploration ratio thus indicates the
completeness of the reconstruction and the reconstruction error
the average quality of the obtained model. Due to the stochastic
nature of the planners all experiments are repeated 10 times and
the means and standard deviations are reported.

A. Volumetric Indoor Exploration

We evaluate the ability of our algorithm to generate efficient
paths in the application of volumetric exploration. Therefore,
‘unknown volume’ as used by RH-NBVP and AEP is substituted
as gain g(Vi). Fig. 5(a) shows the exploration rate of each method
in the maze scenario. Even though different paths were taken in
different experiments, our method achieves full exploration of
the observable map volume after 25 minutes in all runs, showing
its global coverage capabilities. A visual analysis is given in
Fig. 4, showing the executed path (starting from the center)
after 15 minutes of exploration. RH-NBVP suffers from several
issues, including: long computation times when stuck in a dead
end, spending a lot of time turning on the spot, and frequent
changes of the exploration site. Consequently RH-NBVP travels
only 210 m, covering 60% of the environment. By contrast AEP
and our method keep constantly moving, covering a distance
of 297 m and 330 m, respectively. As our proposed method
maintains and refines a trajectory tree it has access to more and
higher quality paths then methods such as AEP which rebuild a
tree in every iteration. This results in the selection of smoother
and more informative paths. Thus even when using the same
linear path representation and gain formulation as the other
methods our proposed method achieves a higher convergence
rate and final map quality.
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Fig. 4. Executed paths after 15 minutes of autonomous exploration in the maze scenario, starting from the blue pose. Although all three methods sample linear
paths, our method’s capability to refine the tree to maximize global utility produces less jagged paths. This results in a larger area being explored in the same time
while covering a distance similar to AEP.

Fig. 5. Exploration progress for the maze environment (left) and building (center). Average reconstruction error on the building environment (right). Mean and
standard deviation over 10 experiments are shown.

B. 3D Reconstruction

The objective in the urban scenario is to accurately reconstruct
the central building. To allow for a fair comparison between
volumetric and surface-based gains, a tight region of interest
bounding box around the target is used. The exploration rates
and average reconstruction errors are shown in Fig. 5(b) and
Fig. 5(c). By sampling global points only, RH-NBVP has diffi-
culties exploring narrow and occluded areas. Both [1] and [18]
put little emphasis on small volumes, especially when they are
far away, resulting in holes remaining unexplored. While AEP
explores the map faster than RH-NBVP, some occlusions escape
its attention, leading to termination with unexplored holes still
in the map. Expanding a large tree, our method is able to fully
explore the building in all of the experiments within 20 min-
utes. Our gain formulation initially focuses on global surface
exploration, before focusing on areas of low map weight, i.e.
low expected reconstruction quality, when no more unobserved
areas are present. This behavior is apparent after 10 minutes,
when exploration slows down, the error is further reduced. This
not only increases the overall accuracy but also results in a more
homogeneous error distribution with lower maximum error. Due
to the quality unaware gain, similar average reconstruction errors

are achieved for [1] and [18]. The difference in behavior and
resulting difference of 4 cm in average reconstruction error is
visualized in Fig. 6.

C. Importance of Sampling and Gain Formulation

To investigate the impact of the components of our pro-
posed method we evaluate different combinations of gain
and sampling strategies. Methods denoted with Our keep the
exploration tree alive, while those denoted with [1] discard
non-executed branches. Both RRT and RRT∗ are explored as
sampling schemes using both the ‘unknown volume’ guv and our
proposed grec gain formulations. The results in Table III show
that retaining the tree significantly improves global coverage.
RRT∗ rewiring improves the exploration speed while providing
an improvement in reconstruction quality with identical gain
formulations. Looking at the results for the different gains we
can see that the proposed gain grec improves over the simpler guv
gain independent of the sampling method employed. Finally, it
is the combination of retaining the tree structure, continuously
refining paths in an RRT∗ manner and the novel gain formulation
that provides results not achievable with other combinations.
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Fig. 6. Obtained 3D reconstruction (top row) and reconstruction error (bottom row) after 30 minutes. Our method is able to fully reconstruct the building without
leaving any holes in the mesh. Error peaks are suppressed by focusing on areas of high expected error, resulting in higher overall accuracy and a more homogeneous
error distribution.

TABLE III
CITY ENVIRONMENT ABLATION STUDY OF VARIOUS COMPONENTS

D. Gain and Value Formulation

Because our algorithm is strongly governed by the objective
function, we investigate the influence of different gains, costs,
and value formulations in the city building scenario. In a first
experiment, we evaluate the effect of the gain g(Vi). The cost
c(Vi) is fixed to the execution time (6) and the value v(Vi) fixed
to vGN (Vi) (9). We compare our proposed voxel impact gain
(5) against the number of unknown voxels, surface frontiers [5],
and confidence voxels [6]. For [5], a maximum number of
points tm = 50 and safety distance ds = 1m is used. For the
voxel confidence, voxels count if they are unobserved or if
their normalized weight w̄(m) < θconf = 0.4. The mean and
standard deviation of 10 experiments are reported in Table IV.
While the exploration times are comparable, the volumetric
gains heavily depend on a carefully chosen region of interest
to attain quick exploration. While most gain formulations trade
off exploration speed for increased quality, our gain quickly
explores the building and then further refines areas of high
uncertainty, resulting in the lowest final reconstruction error.
Although [6] also revisits areas of low map weight, the selected

TABLE IV
IMPACT OF DIFFERENT INFORMATION GAINS

TABLE V
IMPACT OF DIFFERENT COST AND VALUE FORMULATIONS

viewpoints are of similar quality as before and do not translate
into a significant increase in quality.

Next, we fix the gain g(Vi) to the proposed voxel impact (5)
and compare the proposed value function vGN (Vi) (9) against
a linear penalty (8) on the execution time and an exponential
penalty (7) on the accumulated path length as cost and value
formulation. The results obtained with α = 3.0 and λ = 0.5 are
given in Table V. The importance of the cost and value function
choice for global planning is apparent as neither penalty is able
to reliably reconstruct the building. By construction both linear
and exponential penalties favor sub-optimal viewpoints that have
low cost which results in higher reconstruction error values. For
the linear penalty, the obtained error increases by 39% compared
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to our proposed method and matches the error of the quality
agnostic ‘unknown volume’ gain of Table IV, thus completely
negating the advantages of the employed gain. Although careful
tuning of these penalties could improve their performance, the
reliance on parameter tuning is a considerable disadvantage –
especially when compared to our proposed gain, which requires
no parameter tuning.

E. Robot Experiment

We deploy our proposed method as well as RH-NBVP [1]
on a real MAV. Fig. 1 shows the reconstructed environment
after 3 min flight time. The MAV is equipped with a Realsense
D435 sensor and uses the same parameters as the simulation
experiments. State information was provided by a Vicon system
to remove compounding errors induced by state estimation drift.
We can see the qualitative difference between the trajectories and
the final reconstructed scene in Fig. 1. Our proposed method
traverses a larger part of the environment and obtains a re-
construction with no holes and straight walls. By comparison,
RH-NBVP remains in a small area, failing to cover certain
viewpoints, which results in the reconstruction containing holes
and non-straight walls. This difference in behavior and recon-
struction quality is explained by our cost function reasoning
about the sensor’s noise, which encourages moving closer to
surfaces as opposed to simply ensuring observing voxels.

VIII. CONCLUSIONS

In this letter, we presented a new sampling-based online in-
formative path planning algorithm. Our approach obtains global
coverage by continuously expanding a single trajectory tree,
allowing the algorithm to maximize a single objective function.
This enables the method to reason about the global utility of
a path and refine trajectories to maximize their value. The
versatility of the algorithm is demonstrated in two different
applications, maximizing a volumetric exploration gain and a
3D reconstruction gain. We introduced an efficiency-inspired
value formulation and 3D reconstruction gain that outperform
state of the art methods and do not require additional tuning.
Experiments on a real MAV show the robustness and real-time
capabilities of our method. We make our framework available
for adaption to other applications and future research.
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