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A Heterogeneous System of Systems Framework for Proactive Path
Planning of a UAV-assisted UGV in Uncertain Environments

Patrick Sherman and Nicola Bezzo

Abstract— A common challenge for mobile robots is travers-
ing uncertain environments containing obstacles, rough terrain,
or hazards. Without full knowledge of the environment, an
unmanned ground vehicle (UGV) navigating towards a goal
could easily drive down a path that is blocked (requiring the
robot to retrace sections of its path) or run into a hazard causing
a catastrophic failure. To address this issue we propose a system
of systems (SoS) abstraction to group a distributed set of robots
into a single system. Specifically, we propose augmenting the
sensing capabilities of a UGV using an unmanned aerial vehicle
(UAV). With different dynamic and sensing capabilities, the
UAV scouts ahead and proactively updates the plan for the UGV
using information discovered about the environment. To predict
reachable states of the UGV, the UAV employs a sampling-
based method in which a set of virtual particles representing
simulated instances of the UGV are used to approximate the
distribution of possible trajectories. The UAV assesses if the
current UGV path plan is inefficient or unsafe, and if so,
provides an alternative path to the UGV. For robustness, a
model predictive path integral (MPPI) optimization method is
used to modify the waypoints when delivered to the UGV. The
strategy is validated in simulation and experimentally.

Note—Videos of the simulations and experiments are provided
in the supplementary material and can be accessed at:
https://www.bezzorobotics.com/ps—iros24.

I. INTRODUCTION

The ability to develop autonomous solutions using a
team of heterogeneous robots has the potential to solve
a variety of real-world applications. Intuitively, a system
of heterogeneous robots can take advantage of the unique
capabilities of each robot type to complete tasks more
efficiently than a single robot or a homogeneous multi-robot
system. In this work, we focus on a particular heterogeneous
system consisting of an unmanned ground vehicle (UGV)
and an unmanned aerial vehicle (UAV) offering different but
complementary motion and sensing capabilities.

Let us consider a UGV navigating alone to a goal position
through an uncertain environment. Object detection and ob-
stacle avoidance is achieved by using sensors like LIDARs or
cameras. However, since such sensors are statically attached
to the robot, it must rely on its mobility to detect and map
the surrounding environment. With this constraint, the robot
cannot effectively plan beyond its field of view, potentially
causing drastic inefficiencies. For example, Fig. 1(a) shows
a UGV navigating towards a goal. Currently unknown to the
UGY, an obstacle blocks the path and the robot will be forced
to turn around to find an alternate route. In other scenarios,
there is also the possibility of damaging the UGV if it drives
into a hazard that is undetectable by the sensors, such as a
deep body of water or a cliff.
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(@) (b)
UGV navigating in uncertain environment: (a) without assistance
from UAV and (b) rerouted to shorter path after UAV has scouted ahead.

Fig. 1.

To address this problem, we propose a novel system of
systems (SoS) architecture for proactive path planning that
considers both liveness (i.e. something good will eventually
happen) and safety (i.e. nothing bad will ever happen)
constraints. This framework is a synthesis of proven robotic
planning and sampling-based techniques that we combine
into a high-level strategy for collaboration between a UAV
and a UGV. By treating the UAV as an extension of the
UGV’s sensing and computation capabilities, the two dis-
tributed systems create a unified and more capable robotic
system. Consider the result in Fig. 1(b). By scouting ahead
to explore the environment, the UAV is able to discover and
reroute the UGV to a shorter total path than the equivalent
case in which the UGV was operating alone (Fig. 1(a)). To
explore most effectively, the UAV scouts ahead along the
predicted trajectory of the UGV. For trajectory prediction
we propose a sampling-based reachability analysis technique
that leverages virtual particles representing possible future
beliefs of the UGV. When the UAV determines a better path
for the UGV is possible, it can proactively reroute the UGV
during operation. Dealing with the constraint that the UAV
and UGV can be disconnected while exploring, the UAV is
triggered to rendezvous with and reroute the UGV when: 1) a
self-triggered signal if a more efficient path is discovered or
2) an event-triggered signal if the UGV is about to run into a
hazard or is reaching a location where there are uncertainties
on the direction it may take (e.g. a fork in the path). Once
triggered, the UAV flies back to the UGV to reroute the
ground robot to the better path by delivering an updated set of
target waypoints. Finally, for additional robustness the UAV
uses a model predictive path integral (MPPI) sampling based
optimization technique to adjust the waypoints.

The main contribution of this work is 1) a coordinated
system of systems (SoS) abstraction for autonomous path
planning and decision making for safe and efficient naviga-
tion of a UGV dynamically rerouted by a UAV. Part of our
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contribution also includes 2) a sampling based reachability
analysis technique to predict the future closed-loop robot
trajectories under model and noise uncertainties. In this
paper, we specify a UGV-UAV system, however the proposed
framework is general for different heterogeneous systems.

The rest of this paper is organized as follows. We first
review related work in Sec. II. In Sec. III we mention our
assumptions and constraints before defining the problem in
Sec. IV. Next, in Sec. V we detail the complete approach
of our framework. Finally, we present simulation and exper-
iment results in Sec. VI and conclusions in Sec VIIL.

II. RELATED WORK

Planning and decision strategies for multi-robot systems
(and specifically UAV-UGV operation) is a growing topic
of interest in robotics research. In [1] the authors present
an application to surveillance that takes advantage of the
different sensing capabilities of the UAV and UGV. Planning
for a heterogeneous system when the UGV acts as a recharg-
ing station is examined as a rendezvous schedule problem
in [2] and [3], while [4] proposes a control strategy using an
artificial force network based on remaining energy.

Much of the research in cooperative multi-robot systems
in uncertain environments has been focused on autonomous
exploration. Some recent work has focused on exploring
environments too large for the robot to hold a standard
occupancy map. For example, [S] presents an approach that
allows the robot to focus on the boundary (or frontier)
regions while [6] and [7] represent the map as a connected
graph dense around the robots but sparse for the global
map farther away from the robot. To handle scenarios in
unknown environments, with unknown task locations, and
unreliable communication, [8] proposes a novel approach
using epistemic logic to allow the UGV and UAV robots
to reason about other robots’ beliefs. In these works, the
solutions involve allocation of UGVs and UAVs to explore
different areas to work in parallel to build a complete map.
In contrast, our solution involves the UGV and UAV working
directly together to navigate the environment.

There are also efforts to use UAVs to sense different
terrains to aid in the path planning for the UGV. The authors
in [9] present work that simultaneously plans a route for
the UGV while taking into account the terrain classified by
a neural network. The work in [10] and [11] use a UAV
to collect images of the environment to build an energy-
cost map to plan the best path for a UGV. Similar work is
presented in [12] for a multi-robot system to plan optimal
routing for each robot considering different terrains. Our
framework differs from these works by allowing the UAV to
explore (while still considering the terrain) simultaneously
with UGV navigation, instead of relying on the UAV to first
explore the whole environment.

Research for UGV path planning via UAV exploration
has also recently received significant interest. A hybrid path
planning method is introduced in [13] to: first, use UAV
images to help UGV improve recognition of obstacles, and
second, use a genetic algorithm to find an optimal path for the
UGYV. To improve the UAV exploration, the authors in [14]
present a method to use frontiers and UGV traversability
to reduce the time the UAV needs to find the optimal UGV

path. To handle situations where the UGV is unable to detect
obstacles, [15] presents a method where the UAV hovers
above the UGV during travel with the UAV acting as the
only sensor for obstacle detection. Considering safety, the
authors of [16] have developed a method for the UAV to
scan the route slightly ahead of the UGV to continuously
provide updated map information to the UGV. In our work,
we expand the capabilities of the UGV-UAV system by
allowing the robots to become disconnected, enabling the
UAV to explore farther ahead in the environment.

To the best of our knowledge, we believe our work is
the first to propose a path planning strategy for a UGV
assisted by a UAV that allows both robots to navigate the
environment simultaneously while also allowing the two
robots to become disconnected, reducing the total navigation
time for the UGV while considering real-world constraints
found when operating robots in challenging environments.

III. PRELIMINARIES

In this section we provide various assumptions and con-
straints used to build the proposed planning framework.

Environment: In addition to obstacles, our application con-
siders terrains in the environment. We observe that there are
two sub-categories of terrain that occur: 1) Hazardous terrain
(e.g. pools of water) where the UGV would experience a
catastrophic failure if it entered the area and 2) Rough terrain
(e.g., mud) that can safely be traversed but with degraded
performance. For use in planning algorithms, rough terrain is
given a constant penalty cost C; similar to [11], quantifying
the efficiency loss of the UGV while travelling over it.

Sensing: Our path planning strategy is generalized to be
able to handle various sensing capabilities between the UGV
and the UAV. For demonstration purposes, in this paper we
assume: 1) both robots are able to detect obstacles in the
environments and 2) the UAV is able to detect rough and
hazardous terrain (e.g., using a bird’s eye view) which the
UGV is unable to sense.

Communication: We assume that communication between
robots is limited and only possible when the distance be-
tween the robots is below some communication radius 7.
Additionally, we consider realistic communication bandwidth
limiting the data communicated between the robots to a small
number of waypoint coordinates.

System Dynamics: Throughout the paper, we use =, =
(2g,y)T and T, = (74,ya)" to denote the zy position of
the UGV and UAV respectively. The explicit system model
for the UAV isn’t relevant to our framework, however in
the case study presented in the paper, we assume the UAV is
able to maintain a constant z height and moves in a xy plane.
The UGV system dynamics are known and are modeled in
discrete time as a function of the current UGV position x4,
control input ug4, and random disturbances w. The variable
k is used to signify discrete simulated timesteps. The model,

xg(k+1) = flxy(k),ug(k), w) €))

is used by the UAV to estimate the UGV’s trajectory when
scouting ahead. In this paper we use the common unicycle
model for the UGV, but the proposed method is agnostic to
the exact model type.
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IV. PROBLEM FORMULATION

Let us consider a SoS composed of a UGV and a UAV
both initialized at the same initial position x( and tasked to
navigate to a desired final position x4 through an uncertain
environment while dealing with obstacles, anq hazardous or
rough terrain (see Preliminaries). We define Ty as the total
time for the UGV to reach x4 if it was operating completely
alone (i.e. without assistance from the UAV scouting ahead).
Similarly, let us define 7' as the optimal minimum time
to reach x, if the robot had complete knowledge of the
environment for the initial plan. Given the aforementioned
definitions, our problem can be formally defined as:

Problem: System of Systems (SoS) Navigation under
Liveness and Safety Constraints: Derive a path planning
policy for the SoS to minimize UGV mission time T
such that the following boundary conditions for the liveness
constraint is respected:

T; <Ty < Ty 2)

with the goal being that T’ is as close to the ideal time T';
as possible. The policy should also guarantee UGV safety
by avoiding hazards at all the times:

|ay(t) —h| >0, Vte[0,Tf], VheH 3)

where x4(t) is the position of the UGV at time ¢, and H
is the set of all hazards h. In the case study focused in this
work, the UAV can detect hazards the UGV is unable to
detect. Thus, if needed, the UAV should reroute the UGV to
a safe path that avoids any hazard.

V. APPROACH

The proposed framework is a path planning and decision
making strategy for a system of systems (SoS) architecture in
which a fast and agile UAV augments the sensing capabilities
of a slower moving UGV navigating an uncertain environ-
ment. Throughout this section, we detail the behavior of each
robot in the SoS and the various techniques that combine to
create the complete proposed path planning policy.

A. UGV Behavior

triteel] Gl Obstacles detected
Exploration in path Drive to target
towards final goal > waypoints
Rerouted by UAV

Fig. 2. UGV finite state machine.

The UGV’s behavior can be abstracted as the state ma-
chine in Fig. 2 with two states each determining the UGV’s
current target position. Initialized in the Final Goal state,
the UGV attempts to directly reach the final goal position
x4. The UGV remains in this state unless it is rerouted by
the UAV which causes a transition to Waypoint Tracking.
When rerouted, the UAV delivers an ordered set of waypoints
Xy ={xg4,@1,...,xq} describing a path avoiding all known
obstacles hazards from the current UGV position x, to the
final goal position 4. While in this state, the UGV drives
towards each waypoint in order until reaching x.

If a previously unknown obstacle is detected that crosses
the UGV’s current path plan, the robot transitions back to the
Final Goal state, ignoring the waypoints and driving to the fi-
nal goal position instead. In either mode, the UGV navigates

the unknown environment towards the target position using a
frontier based method described in the following subsection.

B. UGV Frontier Exploration

For navigation through the unknown environment, the
UGV utilizes a frontier-based method [17] for selecting the
target position for the current control cycle. The frontier F
is defined as the set of cells in the robot’s occupancy map
currently marked as free cells that are adjacent to an unknown
cell. By driving to points along the frontier, the robot forces
new areas in the environment to be explored.

'« Frontier Points|

Ag’? ° i ‘ - ¢ Goal
° /

: 9(;f)¥ . = *

. ;pf S

el m»/r ()

Frontier points & example cost measures for single frontier point.

Fig. 3.

When exploring using the frontier method, a single point
from the frontier set &% C F is selected to use as the target
position. The target point :1:} is determined by finding the
frontier point that minimizes a user defined utility function.
For computational simplicity, the cost measures for the utility
function used in this work include: 1) a distance cost d(xy),
defined as the point x¢’s euclidean distance from the target
position and 2) a heading cost §(x ) defined as the angle
between the robot’s current heading and the line connecting
the robot and the point . Fig. 3 graphically shows an
example of the cost metrics (distance and heading) for one
frontier point. By minimizing the distance cost, we encourage
exploration towards the target position and by minimizing the
heading cost we avoid inefficient switching between different
sections of the frontier. The selection of the single point =%
from the frontier set is mathematically defined as:

x} = argmin (wql|Ca(x )|l + wel|Co(xy)l]) 4
xsEF

where wg and wg are experimentally adjusted weights that

determine the importance of each measure to the total cost.

The cost components are normalized to avoid comparison of

components with different units.

_ d(xf) - dmin

[Catarp)) = G L= ®
_ 9(:1:]0) — Omin

||C€(wf)H B 0mam - omin (6)

Unless rerouted by the UAV to follow specific waypoints, the
UGYV continues to explore using the frontier until it reaches
the final goal position.

C. UAV Behavior

An overview of the UAV operation is described here
before going into the details in the subsequent subsections.
Compared to the UGV, The UAV has a more complex
behavior as it has the responsibility of scouting ahead, de-
termining if a better path exists for the UGV, and potentially
rerouting the UGV. The finite state machine describing UAV
behavior is shown in Fig. 4. In the initial Particle Follow
state, the UAV explores the environment by tracking the
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Fig. 4. UAV finite state machine.

predicted UGV trajectory determined from virtual particles
representing possible beliefs of future states of the UGV
(Sec. V-D). If the UAV discovers hazardous terrain along
the predicted UGV trajectory, it transitions to the Frontier
Exploration state. In this state, the UAV explores using the
same frontier method as the UGV (Sec. V-B) until a safe
viable path is found for the ground robot. When a potential
new path for the UGV is found and the path goes through any
cells in the occupancy map currently marked as unknown, the
UAV transitions to the Optimal Path Check state and checks
all unexplored cells in the new path to validate the path. Even
if a more efficient or safer path for the UGV is determined,
our framework encourages more exploration by waiting to
deliver the waypoints until absolutely necessary (Sec. V-E).
When triggered, the UAV transitions to the UGV Rendezvous
state to meet and reroute the UGV. In this stage (the Path
Refinement state), a path optimization procedure for safety
using MPPI optimization (Sec. V-F) is run to adjust the new
waypoints to be delivered to the UGV. Once delivered, the
UAV restarts the scouting and exploration process.

D. Reachability Analysis via Virtual Particles

A necessary component of the work presented in this paper
is the ability of the UAV to scout ahead along the predicted
trajectory of the UGV. This can be difficult when operating
robots in the real world since the prediction procedure needs
to handle uncertainties and noise in the system. A typical way
to predict future states is with reachability analysis [18], how-
ever there are two significant limitations with the technique.
First, reachability analysis is computationally expensive [18]
and second, standard reachability analysis assumes the robot
is controlled using open-loop commands while the UGV in
our system continuously uses feedback control. Instead, we
propose using a sampling-based prediction policy using a
set of virtual particles P for estimating the reachable set of
the UGV. Each particle p; € P represents a possible belief
of the UGV prediction. Each particle is a unique simulated
instance of the UGV navigating the environment alone. The
set P of n,, total particles is formally defined as,

P ={pi = (xp,,tp), Vil ..,nl} @)

where the ith particle p; is a tuple containing the simulated
position x,,, and associated timestamp ¢,, of the UGV. Using
knowledge of the UGV system dynamics (1) and the control
algorithms to determine the input u;(k), the UAV propagates

a particle p; forward in time by updating its tuple
tp(k+1) =t,(k)+dt )

where dt is the simulated sample time and w ~ N(0,07)
is a normal random variable injecting randomness into the
prediction to mimic real-world noise and uncertainties. Each
control cycle, the UAV repeats (8) and (9) to simulate
the particle forward in time until the distance between the
particle position x,, and the UAV position x, reaches the
edge of the UAV sensor range R, (i.e., ||€p, —x4|| = R). By
simulating multiple particles, the sample set P approximates
the distribution of possible trajectories for the physical UGV.

Different than standard reachability analysis, the particle
sampling approach allows us to include the UGV’s
feedback control in the state prediction. By including
feedback, the variance of the distribution remains bounded
as the control compensates for the random noise and
uncertainties, hence clustering all particles together as
time progresses. The average position of the particles
and corresponding simulation time are used as the
estimate of the future position &, at time %, for the
UGV. The values are saved together in a set V, =
{(:&Q(O% tp(o))7 s (ig(/{), tp(k)7 ) (:i:g(Nk)7 tp(Nk?))}
that represents the predicted trajectory for the UGV. The
final position &,(INy) in V, represents the farthest point the
UGV has currently been simulated. Using V), for trajectory
prediction of the UGV, the UAV scouts ahead along the
trajectory and assess if the UGV could potentially reach
unsafe or sub-optimal conditions.

P

(b) Particle in Hazard

Fig. 5. Virtual particles identifying uncertain/dangerous scenarios for UGV.

A second utility of the virtual particles is to identify two
possible issues shown in Fig. 5. In scenario (a) a fork in the
path is discovered and the UAV is unsure if the UGV would
turn left or right, so the UAV doesn’t know which direction to
scout along. To identify this “particle split” scenario, a set of
particle clusters WV is created via a density-based clustering
algorithm similar to dbscan [19]:

W= Jr-P)

i=1

Pi = {pj ‘ Hmpj _szH <6, VP € Pi}

(10)

(1)
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where each cluster P; is composed of particles p; that are
within some distance . from all other particles in the same
cluster. The total number of clusters Np changes during
the mission depending on the situation. Fig. 5(a) shows an
example with two clusters in W circled in green. When
Np > 1, a “particle split” scenario is identified and the
UAV selects the cluster with the largest number of particles
to follow. When the UGV approaches the fork, the UAV
intentionally reroutes the UGV to take the same path it
scouted.

For scenario (b) the UGV route lies close to hazardous
terrain such that the UGV could potentially drive into an
undesired region. To identify this scenario, the UAV checks
if any particle position x,, is within the hazard region as
defined by (3). In this case, the UAV marks the current UGV
trajectory as unsafe and switches to a frontier exploration
mode, treating the hazard as a solid obstacle to avoid, to
explore the environment looking for a safe path for the UGV.

In either scenario, the UAV saves the last known safe
position of the particles as a rerouting checkpoint x. (shown
in Fig. 5), representing the farthest the UGV is allowed to
reach before it needs to be rerouted by the UAV.

E. Triggering Procedure for Proactive UGV Reroute

Given the constraint that the UAV and UGV are unable to
communicate when apart, a critical piece of our framework is
the process to signal the UAV when it should stop exploring
and should instead rendezvous with the UGV. We include
two types of signal triggers: 1) a self trigger when the UAV
has found a better path plan for the UGV; 2) an event
trigger when the UGV is approaching a rerouting checkpoint
. (determined from virtual particles as discussed in the
previous section). When triggered, the UAV flies towards the
UGV to reroute it by delivering an updated set of waypoints
X*. The rest of this section details the necessary algorithms
and calculated metrics required for the triggering decision.

1) Rendezvous Point Calculation: While scouting ahead
and disconnected from the UGV, the UAV continuously
calculates the projected rendezvous point x, defined as
the position the UAV would meet the UGV if it started
immediately. Shown in Fig. 6 by the green circled point,
the rendezvous point is important for two reasons: 1) The
UAV needs to ensure it can reach the UGV to safely reroute
it before the UGV approaches a rerouting checkpoint; 2) The
UAV uses x,. as the starting point for calculating the optimal
rerouting waypoints described later in this section.

I e ¢ - Shortest Path
8 I R - 3~ === S R —X - UGV Predicted
i == Y z, - Rendezvous i
" oF ST i s |-4,(V) - Final Predicted ]

Fig. 6. Comparison of predicted UGV trajectory with optimal path to same
position.

The rendezvous point x, is calculated by the UAV using
an iterative approach shown in Algorithm 1. The input
includes current position x, and velocity v, of the UAV
as well as the predicted UGV trajectory V), that contains
estimated position and corresponding time. Stepping through

the predicted UGV trajectory, the algorithm tests how long
the UAV would take to fly towards each UGV position. The
first point along the trajectory where the UAV could arrive
before the UGV is set as the rendezvous point .

Algorithm 1 Calculating Rendezvous Point

Input: x,, v, V, = (&,(k),1(k)) ¥ k
Output: Rendezvous Point, x,

1: t; is the time step to test for meeting point
2: t, is time required for UAV
3: t; < thow

4: while t; <t, do

5: t; —t; +dt
6
7
8
9

> Initialize to current time

> Increment time step

> Rendezvous point to test
> Distance from UAV

> UAV flight time

T, < (i:g(f,i)
da A Hma - :L’,H
to < do/va

: return x,

2) UAV Trigger Signal Procedure: With the rendezvous
point x, and farthest point in the predicted trajectory
Z4(Ng), an optimal path can be calculated and compared
against the current UGV path (see Fig. 6). Although many
methods exist to determine an optimal path, in this work we
choose to use a standard A* algorithm with a post-processing
smoothing algorithm based on line-of-sight to reduce the
number of points. The heuristic for a given position « used
by our A* algorithm is,

H(x) = 1/C - || — &4 (Ny)|| (12)

where &,(Ny) is the end of trajectory position and C; is a
terrain efficiency cost mentioned in Sec. III. For nominal
conditions, C; equals 1 and (12) equals the distance to
the goal. For rough terrain (e.g. mud or sand), C; < 1
based on the efficiency reduction the UGV experiences when
traversing the terrain. For ease of discussion in this work, we
assume the terrain cost value C; is known by the UAV for
all detected terrain.

The output from the path planning algorithm is a series
of waypoints X'* that define the optimal path for the UGV.
The optimal path is compared against the predicted UGV
path X (the path the UGV would take if it doesn’t receive
any assistance from the UAV) determined by the position
elements of V. Intuitively, if there is a significant difference
between the X and X *, then it is advantageous to reroute
the UGV to follow X*. Fig. 6 shows an example instance
where the UAV has found a more efficient path for the UGV
and self-triggers to rendezvous with the UGV to reroute.

To mathematically compare X and X'*, a utility function
Sx(+) is used to quantify the cost of a path. The details of
the utility function can be application specific but an obvious
example would be UGV total travel time. With Sx(-), we
define a difference metric Ax to quantify the improvement
of X* over X

Ax = Sx(X) — Sx(x™*)

Using Ay, the self-triggering event for UAV is raised when
the following conditions are both satisfied:

13)

Ax>5x (14)

13240



AX < Ama:r - 6m (15)

where dx is a user defined value to prohibit the UAV
wasting time flying back for only a minimal gain. A, .,
is defined as the maximum Ax observed so far and 0,
is a small threshold to handle noise. If the UGV starts to
travel down the less optimal path, the improvement from re-
routing will begin to decrease, thus the value of Ay will
also decrease. Condition (15) is used to enable the UAV
exploring as long as possible while triggering to deliver new
waypoints to the UGV at the optimal time. As an example,

20

Trigger event for UAV to
rendezvous with UGV

Fig. 7. Difference metric(f)or test case in Fig. 1.

Fig. 7 shows the computed A x metric for the experiment in
Fig. 1. While flying ahead and exploring the environment,
the UAV discovers the path is blocked (at ¢t = 12s) and Ax
quickly grows, signifying a significant difference between
the predicted and optimal paths. The self-triggering event is
raised at t = 22.5s to signal the UAV to rendezvous with the
UGYV and reroute it.

The triggering procedure also needs to handle the scenar-
ios in which the UGV approaches a hazard or a fork in the
path. In order to meet the UGV as it reaches the rerouting
checkpoint ., the event trigger signal is raised on the UAV
when the distance between the rerouting checkpoint x. is
within some distance threshold d; of the rendezvous position
x,, formally when ||z, — .| < d;. When triggered by the
potential fork case, the UGV is rerouted along the same path
the UAV has already explored.

F. MPPI Based Waypoint Modification

Once triggered, the UAV delivers a new set of waypoints
to the UGV. However, due to the nonholonomic design of the
robot, noise, and other non-linearities of the system, the UGV
will not exactly follow the straight line path described by the
waypoints. As a result, the waypoints may potentially lead
to a dangerous trajectory for the ground robot. For example,
driving alongside a boundary of a hazard could result in
catastrophic failure with even slight deviations.

To deal with this issue, our framework uses a model
predictive path integral (MPPI) optimization procedure to
modify the UGV target waypoints before delivering to the
UGYV. Due to real-time constraints, it would be infeasible
to run the optimization for the full path through the envi-
ronment. Instead, the MPPI operation optimizes the UGV
trajectory over a finite time horizon t € [to,to + Tl
Because the procedure is sampling based and iterative, the
computation can be time-bound to ensure completion when
the UAV is within communication range of the UGV.

As shown in our previous work [20], the MPPI procedure
for optimizing waypoints can be formulated as a stochastic
optimal control problem:

X' =argminE[J(X + )]
X

(16)

where X is a fixed set of target waypoints for the UGV, £ =
{€z, €y} 1s a random variable adding zy perturbation, and
J(-) is a cost function whose expected value is minimized.
For this framework, the waypoints from the optimal path
planner X'* are used as the initial waypoints X" for (16). With
the perturbed waypoints X' 4 £ and known starting position
x(to), the UGV is simulated to generate sample trajectories.

The cost function is a combination of three components:

J(X) = Cp(X) + Cops(X) + Cr(X) (17)

Where the terminal cost C'r(X) is defined as the distance
from the final position x(Ty) in the simulated sample
trajectory to the final waypoint xr in X + £, multiplied
by a weighting factor a:

Cr(X) = ayl|lz(Th) — zF|

The second term Clps(X') is an obstacle cost that penalizes
any trajectory that intersects with an occupied cell. The
term is composed of a weighting factor o, multiplied by
an indicator function that has a value of 1 if the trajectory
collides with an obstacle and is 0 otherwise.

Cobs(.)() = aOIO(X + 5)

(18)

19)

Finally, C,.(X) is the running cost of the trajectory that takes
into account changes in terrain.

Ty
Cr(X) = > p(a(tr)) (20)
k=1
For our application we define the running cost function p(-)
whose value depends on the terrain at x(ty). For rough
terrain, the cost is the inverse to the terrain efficiency loss
C, for the terrain type at position «. For hazards, a large
constant d is selected to heavily penalize a trajectory that
crosses hazards, as defined by (3).

oH if x in hazard
p(x) =< 1/C; if x rough terrain 21
0 otherwise

With the cost function defined, we use (17) to get costs
C ={c1,¢9,...,cn} for N total sample trajectories of X' +&.
We can then follow the procedure developed in [20] to
approximate the solution X’ to (16). When completed, the
modified waypoints X’ overwrite X* as the waypoints to
deliver to the UGV.

VI. RESULTS

In this section we present simulation and experiment
results to validate the proposed SoS framework on a UGV
assisted by a UAV in unknown and hazardous environments.

A. Simulations

Simulations were conducted to validate the strategy in
20 different environments. Some environments were created
using randomized obstacle placement while others were man-
vally designed. Several environments also included hazards
and/or rough terrain. The UGV was modeled as a non-
holonomic differential drive robot with linear and rotational
velocity control inputs u, = [v,w]”. Flying in a raised zy-
plane, the UAV control input consists of a linear velocity
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command divided into zy-components u, = [vy,v,]. We
allowed the UAV to move at most 3 times faster than the
UGYV, with sensor range 50% larger than the UGV’s.

For comparison, we ran four different scenarios for each
case: 1) Proposed: the UAV-UGV SoS using our proposed
strategy, 2) UGV Alone: The UGV navigates alone without
UAV guidance, 3) Ideal: The true optimal where the com-
plete environment is known, and 4) UAV Explore: The UGV
waits to drive until the UAV explores enough to find the true
optimal path (similar in principle to [9] or [10]). Shown in
Fig. 8, the mission completion time results were recorded, or
marked as a failure if the UGV drove into a hazard. In each
case our proposed strategy improved the total time compared
to a UGV Alone or UAV Explore scenarios. When needed,
the UAV successfully rerouted the UGV away from a hazard.
Thus both the liveness and safety guarantees are validated.

200 f * Proposed * —x
& UGV Alone (Success)
x UGV Alone (Failure) Case ShOWIl in
o O Ideal )
5 150 | © UAV Explore Flg' 9
£ B ¢
'F Ay 1Ay
g 4 o ¢ o ¢ o O ? o o ©
Z100 O o (2 a0 7° ¢
] o R * & * A A
= 5 8 % O ! Fr ¢ 8 ¢ a g L ¢
o » & O & ® @ O & by
50 —
1 23 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Case Number
Fig. 8. Simulation mission completion times comparison for 20 different

environments containing obstacles, rough terrain and hazards. Videos avail-
able at https://www.bezzorobotics.com/ps-iros24

In Fig. 9, we show snapshots from one case using our
framework. Fig. 9(a) shows the initial setup for the envi-
ronment containing obstacles depicted in dark grey, hazards
(e.g. pools of water) in blue, and rough terrain (e.g. mud)
in pink. For this simulation, all obstacles, terrain and hazard
are initially unknown. In Fig. 9(b) the UAV, while scouting
ahead, detects particles running into the first hazard. Since
the UGV is still far away, the UAV continues to explore using
the frontier method. The UAV discovers that the gap between
the two hazards is blocked, so it searches for a feasible
path. Once found, the UAV flies back to rendezvous with the
UGV to proactively reroute the ground robot, as shown in
Fig. 9(c). Fig. 9(d) shows the waypoints calculated from the
A* algorithm result in a path close to a hazard. Since multiple
particles drive into the hazard, the UAV determines that this
path is unsafe for the UGV and adjusts the waypoints. In
Fig. 9(e), the target waypoints are adjusted by the MPPI
procedure to get a safe trajectory around the hazard. Finally,
Fig. 9(f) shows the UGV reaching the goal position. We
highlight that in this case the UAV decided to reroute the
UGV through a shorter section of the rough terrain instead
of the straight line path shown in Fig. 9(d) or a path that
completely avoids the rough terrain.

B. Experiments

Our framework was also validated with laboratory ex-
periments using a Husarion ROSbot and Bitcraze Crazyflie
quadrotor. Position data was measured using Vicon motion
capture system. The UGV’s LiDAR range was limited to
Im while the UAV sensor range was artificially set to 1.6m
and was allowed to move 4 times faster than the UGV. Ex-
periments were conducted in several different configurations

of obstacles and hazards. The experiments were run with
the multi-robot system running our planning framework and
with the UGV operating alone as a comparison.

In each setup, our proposed strategy successfully rerouted
the UGV to a shorter or safer path to reach the final goal
position. In the experiment shown at the beginning of this
paper in Fig. 1, the UAV successfully rerouted the UGV to a
more efficient path to help the UGV reduce total travel time
by 37% in comparison to the UGV-alone case. In Fig. 10,
we show results from an experiment with a hazard directly
in the path of the UGV. In Fig. 10(a), the UAV has started
to scout ahead and detects the hazard. The UAV continues
to explore until triggered to rendezvous when the UGV is
getting close to the hazard, Fig. 10(b). In Fig. 10(c), the UAV
rendezvous with the UGV and reroutes it. After delivering
the safe plan, the UAV restarts the scouting process until
reaching the final goal position, Fig. 10(d). Determining that
the UGV is already on an efficient and safe path, the UAV
lands and the mission finishes when the UGV reaches the
final goal position, Fig. 10(e). As a comparison, Fig. 10(f)
shows the scenario when the UGV is unassisted: not able to
detect the hazard, the UGV drives straight ahead until falling
into the hazard, failing the mission.

VII. CONCLUSION

In this paper we presented a novel strategy to unify a
heterogeneous multi-robot system with a System of Systems
(SoS) abstraction. Using a UGV-UAV pair of robots as an
example, we propose a planning strategy taking advantage of
the different sensing and dynamic abilities of the robots. By
predicting the slower UGV trajectory, the faster UAV is able
to scout ahead in the unknown environment and determine
if the current UGV path plan is inefficient or unsafe and
should be rerouted with an updated path plan. Using a self-
triggering process, the UAV is able to delay rendezvous with
the UGV to continue exploration. We validated our work
both in simulations and experimentally in the lab.

For future work, we plan to generalize our framework
for different robot combinations beyond a UGV-UAV. This
includes working with multi-robot systems larger than 2
robots or different robot types such as legged robots and
UAV-UAV combinations. Additionally, we hope to deploy the
framework in more realistic settings by conducting outdoor
experiments.
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