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Abstract—In this article, we consider the computational and
communication challenges of partially observable multiagent se-
quential decision-making problems. We present algorithms that si-
multaneously or sequentially optimize the agents’ controls by using
multistep lookahead, truncated rollout with a known base policy,
and a terminal cost function approximation. In particular: 1) we
consider multiagent rollout algorithms that dramatically reduce
required computation while preserving the key policy improvement
property of the standard rollout method. We improve our multi-
agent rollout policy by incorporating it in an offline approximate
policy iteration scheme, and we apply an additional “online play”
scheme enhancing offline approximation architectures; 2) we con-
sider the imperfect communication case and provide various exten-
sions to our rollout methods to deal with this case; and 3) we demon-
strate the performance of our methods in extensive simulations by
applying our method to a challenging partially observable multia-
gent sequential repair problem (state space size 1037 and control
space size 107). Our extensive simulations demonstrate that our
methods produce better policies for large and complex multiagent
problems in comparison with existing methods, including POMCP,
MADDPG, and work well where other methods fail to scale up.

Index Terms—Approximate policy iteration (approximate PI),
imperfect communication, multiagent reinforcement learning,
multiagent rollout, online play policy, partial observation
Markovian decision problem (POMDP).

I. INTRODUCTION

W E CONSIDER the classical partial observation Marko-
vian decision problem (POMDP) with a finite number

of states and controls, and discounted additive cost over an
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Fig. 1. Instance of multiagent sequential decision-making problem where four
agents coordinate in repairing a partially observable network of 32 vertices, each
with a different level of damage.

infinite horizon. We focus on a version of the problem that has a
multiagent character: it involves a control that has multiple com-
ponents, each corresponding to a different agent. This version
of the problem is suitable for multiagent sequential decision-
making tasks. We address several concerns that are typical in
realistic scenarios, including partial state observation, a large
state space, a large control space, and imperfect communication
between agents. We showcase the performance of our proposed
methods on an important class of multirobot repair problems
under partial state observation. Fig. 1 shows an instance of the
repair problem where four agents coordinate with each other
to repair a set of partially observable damaged locations in a
network. An optimal solution to such problems by dynamic
programming is typically intractable. In this article, we instead
propose a suboptimal solution/reinforcement learning approach,
whose principal characteristic is the proper exploitation of the
multiagent structure to dramatically reduce the computational
requirements of the solution method. We extend and deploy
the multiagent rollout and policy iteration (PI) ideas (proposed
in [3], [4] for the perfect observation case), to a partially observ-
able multiagent decision-making framework that extends to the
imperfect agent communication cases.

The standard form of rollout [5], starts with some easily im-
plementable policy, called the base policy, and produces another
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policy, the rollout policy, using one-step or multistep lookahead
optimization. Its key property is the policy improvement
property: here, the rollout policy improves performance over the
base policy for all states. In a multiagent setting, the lookahead
optimization portion of the standard rollout algorithm becomes
very computationally expensive. By contrast, in our multiagent
rollout approach, the computation complexity of the lookahead
optimization is dramatically reduced while maintaining the fun-
damental policy improvement property. Our multiagent rollout
policy is implemented approximately using truncated rollout and
a terminal cost approximation, where, the policy improvement
property applies in an approximate form, which is quantified
by an error bound not worse than that of the standard rollout.

We employ our multiagent rollout algorithm in an approxi-
mate policy iteration (approximate PI) framework in order to
improve the policy in an iterative fashion where successive poli-
cies are approximated using neural networks. The performance
of a purely offline trained policy may degrade in a complex and
dynamic environment. Thus, we study an “online play policy”
(first introduced in [6] for the perfect observation case) for much
more complex problems due to the partial state observation. The
“online play policy” performs an online lookahead optimization
with an offline trained policy as the base policy and an optional
terminal cost approximation, trained offline. We show in our
simulation experiments that the performance of the online play
policy is superior than both our multiagent rollout (without
any offline training) and our approximate PI algorithms (with
offline approximations). This performance improvement can be
attributed to the fact that the online play implements a true
Newton step that has a superlinear convergence property, making
the online play policy converge to the optimal policy much faster
than the offline approximations (see [6]).

We demonstrate the implementation of our multiagent rollout
methods on a challenging class of multirobot repair problems,
where a policy needs to identify and execute critical repairs in
minimum time by leveraging coordination among the agents.
We apply our method to a complex repair problem involving
a network of 500 partially observable, potentially damaged
locations, and as many as 50 repair robots/agents in our largest
experiment (see Fig. 1, where four agents are employed). In
particular, we present favorable comparisons (with four agents)
of our proposed method with the state-of-the-art POMDP solvers
partially observable Monte-Carlo planning (POMCP [1]), mul-
tiagent deep deterministic policy gradient (MADDPG [2]), and
POMCP with action prioritization and progressive widening
(PA-POMCPOW [7]).

We relax the perfect communication assumption by consider-
ing practical extensions where agents cannot communicate their
controls to one another at all times; instead, each agent estimates
other agents’ control using a signaling policy. A signaling
policy applied by an agent guesses the control components
for other agents without the exact knowledge of other agents’
computed control components. However, the loss of perfect
communication between the agents leads to great challenges,
including the lack of the policy improvement property of the
multiagent rollout. Furthermore, we show that imperfect com-
munication may result in the loss of finite termination for the
learned policy in some cases. We show that the incorporation

of a simple randomized policy can recover finite termination
without communication of controls. In addition, we study a
communication scheme where a cloud server is intermittently
available, and provides the communication of the computed
control components of each agent so that agents can perform
the multiagent rollout. When the cloud server is not available,
the agents apply the control given by the base policy without
performing any optimization. We show that under this scheme,
the policy improvement property can be recovered. We present
extensive numerical results demonstrating the performance of
various imperfect communication architectures for multiagent
rollout and a comparison study with a recent method A3C3 [8]
in the large and complex POMDP setup for the multirobot repair
problem where agents may not always share belief states and
computed controls.

This article is most closely related to the multiagent roll-
out methods developed in [3], online play policy [6], and
autonomous repair problems [9]. Our work differs in various
important ways from this prior work as follows.

1) We treat the case of the partially observable state, leading
to an explosion in the size of the state space, not addressed
in [3].

2) We develop a multiagent decision-making framework in
this partially observable context, leading to an explosion
in the size of the action space, not treated in [9].

3) We employ the online play policy to a partially observable
multirobot repair problem (not discussed in [6]).

4) We consider more general repair problems described over
arbitrary graphs (in contrast with the linear or strict grid
topology in [9]) and treat the significantly more challeng-
ing and realistic nonterminating case where previously
repaired locations can fall into disrepair (not treated in [9]).

5) We consider practical issues of imperfect communication
in the multiagent rollout that are not discussed in [3].

This article evolved from our earlier conference publica-
tion [10], and the new contributions in this article which were
not included in [10] are the following.

1) We discuss the online play policy for multiagent sequential
decision-making problems under partial state observation,
which has not been explored in previous work to the best
of our knowledge.

2) We present in-depth analytical results for the imperfect
communication cases. We show that not communicating
controls to other agent hinders finite termination and we
show how to recover the finite termination by using a
randomized approach. Finally, we show that the policy
improvement property is recoverable using an intermittent
communication architecture.

3) We present extensive numerical simulations on a mul-
tirobot repair problem using our approach where dam-
ages can propagate to the neighboring locations, addi-
tional comparison study with multiagent POMDP plan-
ning methods, including PA-POMCPOW [7] (for perfect
agent communication) and A3C3 [8] (for imperfect agent
communication). We show that the online play signifi-
cantly improves policy and cost approximations trained
using an offline approximate PI which is robust and adapt-
able with dynamically changing system parameters.
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II. RELATED WORK

Several reinforcement learning algorithms for POMDP prob-
lems have been proposed in the literature. In particular, [11]
describes a general solution method for POMDP, [12] discusses a
policy search method using finite state controllers, [5], [13], [14]
discuss aggregation-based methods, and [15], [16], [17] con-
sider actor–critic-based policy gradient methods. These methods
are fundamentally different from our proposed rollout-based
methodologies, as they do not directly rely on policy improve-
ment starting from a base policy.

Among works in the POMDP literature, there are some that
like our rollout-based methods, use lookahead minimization,
and also try to tradeoff the length of simulated trajectories
with variable length lookahead tree and pruning. In particular,
POMCP [1] uses multistep lookahead and Monte-Carlo tree
search (MCTS) to generate a suboptimal policy, and deter-
minized sparse partially observable tree (DESPOT [18]) sim-
ilarly reduces the lookahead search tree by adaptive pruning.
However, these methods do not use any kind of rollout with a
base policy. Furthermore, POMCP and DESPOT do not address
multiagent issues.

On the other hand, various multiagent reinforcement learning
and policy gradient methods [19], [20] have been proposed.
Among them, [21] deals with multiagent cooperative planning
under uncertainty in POMDP using decentralized belief sharing
and policy auction, done after each agent executes a value
iteration. The paper [7] discusses ways to POMCP for mul-
tiple agents with PA-POMCPOW. The papers [2], [22] con-
sider an actor–critic policy gradient approach that scales well
with multiple agents. However, the per-agent policy networks
use only the local observations and do not leverage any extra
information when the agents fully or partially communicate
between themselves about their controls and observations. By
contrast, our methodology uses extra information from other
agents and the cloud server whenever available. Papers [8], [23],
[24] discuss decentralized action and communication policies
for multiagent problems, where agents learns when and how
to communicate information to other agents. However, these
works assume the availability of a centralized critic that helps
training decentralized policies, whereas our methods do not
depend on such assumptions. In Section VII, we compare the
performance of our methods to several of these state-of-the-art
POMDP methods.

The paper [9] proposes rollout and PI methods that can address
POMDP, but does not deal with multiagent problems and has dif-
ficulty dealing with a large control space. The paper [9] presents
simulation results for a partially observable repair problem with
two agents, but it does not consider cases with more agents since
the rollout method discussed in [9] optimizes over Q-factors
corresponding to all combinations of the controls by all agents,
which is exponential in the number of agents. In contrast, this ar-
ticle addresses this issue by decomposing the control space. The
rollout policy improvement property, given in [9], also holds for
the multiagent version of this article. The proof was given in [3]
and an associated performance bound was given in the research
monograph [4]. The paper [6] interprets the online play policy

in the context of rollout as a Newton step to improve offline
trained policies with an online optimization and their superlinear
convergence to the optimal policy but does not consider partial
state observation and its associated challenges. AlphaZero [25]
discusses a scheme whereby MCTS-based online lookahead
is used to improve offline approximation architectures given
by deep neural networks in both policy and value spaces for
perfect-state observation cases. In contrast, this article considers
online play for partially observable multiagent decision-making
problems with a smaller but denser lookahead optimization that
improves over offline trained policy and value approximations
with shallow networks.

The methods discussed in this article are well suited for related
multiagent contexts, such as search and rescue applications [26],
[27], [28]. Lauri et al. [29] discussed the problem of decen-
tralized information gathering as a discrete multiagent POMDP
using policy graph improvement, where the authors consider
cases for convex reward functions, which may not be directly
applied to problems, such as our multiagent partially observable
repair problem. We do not consider continuous control space
POMDPs, including multiagent path finding [30] that are not
directly comparable to our approach. Among other challenges
that we do not consider is the generation safe multiagent poli-
cies, [31] discusses sufficient and necessary conditions for safe
policy synthesis for multirobot safety-critical problems using
discrete-time barrier functions.

III. BELIEF SPACE PROBLEM FORMULATION FOR MULTIAGENT

POMDP

We introduce the classical belief space formulation of
POMDP. We assume that there are n states denoted by i = 1,
. . . , n, and that the control u consists of m components, u =
(u1, u2, . . . , um). Each of the components corresponds to a
separate agent. Given a starting state i, and control vector u,
there is a known transition probability to reach the next state
j, which is denoted by pij(u). Each component of the control
u�, � ∈ {1, 2, . . . ,m}, must belong to a finite set U�, so that the
control space U is the Cartesian product U1 × U2 × · · · × Um.
The cost at each stage is denoted by g(i, u, j) and is discounted
with a factor α ∈ (0, 1). The total cost is the sum of the α-
discounted expected costs incurred over an infinite horizon.

We assume that a transition from state i to the next state j
under controlu, will generate an observation z with a probability
p(z | j, u), where z belongs to a known finite set Z. However,
we assume that the agents share observations, so that all com-
putations are done with full knowledge of the entire history of
the observation vectors. Our goal is to determine the control
component for each agent at every stage as a function of the
current belief state, which minimizes the discounted expected
total cost, starting from any initial belief state.

We use the belief space transformation of a POMDP to a
problem of perfect state information, similar to the belief space
transformation used in [9]. In particular, the belief state is the
conditional probability vector b = (b(1), . . . , b(n)), where b(i)
is the conditional probability that the state is i, given the control-
observation history up to the current time. The belief state
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Fig. 2. Composite system simulator for POMDP for a given policy involving
two agents (adapted from [9]). The starting state i of a trajectory is generated
randomly using the belief state b.

can be sequentially updated using a belief estimator F (b, u, z),
from a given belief state b, control u, and observation z (see
Fig. 2). Our formulation considers that the knowledge of the
belief, observation, and control components are shared among
the agents up until Section VII. Sections VIII-D, VIII-E, VIII-F,
and VIII-G consider cases where control is either never shared
or imperfectly shared, but belief and observation are shared.
Section VIII-H considers cases where control components, ob-
servation, and belief are imperfectly shared. The optimal cost
function J∗(b) is the unique solution of the Bellman equation

J∗(b) = min
u∈U

[
ĝ(b, u) + α

∑
z∈Z

p̂ (z | b, u) J∗ (F (b, u, z))

]
where F is the belief estimator, and

ĝ(b, u) =

n∑
i=1

b(i)

n∑
j=1

pij(u)g(i, u, j)

p̂(z | b, u) =
n∑

i=1

b(i)

n∑
j=1

pij(u)p(z | j, u).

Our suboptimal solution approach is based on approxima-
tion in value space, implemented through the use of rollout.
In particular, we replace J∗ in the Bellman equation with an
approximation J̃ . The corresponding suboptimal rollout policy
π̃ is obtained by the one-step lookahead minimization

π̃(b) ∈ argmin
u∈U

[
ĝ(b, u) + α

∑
z∈Z

p̂(z|b, u)J̃ (F (b, u, z))

]
.

(1)
A more general version involves multistep lookahead mini-
mization. In the pure form of rollout, we use J̃ as the cost
function of some policy, referred to as the base policy. In the next
section, we define a rollout algorithm, which uses a simplified
agent-by-agent lookahead minimization, and approximations J̃
that involve a base policy with trajectory truncation and terminal
cost approximation.

IV. MULTIAGENT TRUNCATED ROLLOUT WITH COST

FUNCTION APPROXIMATION

In the pure form of rollout with l-step lookahead, to find the
rollout control at the current belief state b, we form an l-step

Fig. 3. Standard truncated rollout algorithm for two agents: one-step looka-
head followed by t applications of the base policy π, and cost approximation Ĵ .

lookahead tree using the transition and observation probabilities
(see Fig. 3). Starting from each leaf node b′ of the tree, we use
the cost of the base policy π as the cost approximation in (1)
[J̃(b′) = Jπ(b

′), where Jπ(b′) is the discounted cost of applying
the policy π starting from belief state b′ until termination]. In the
truncated rollout version, J̃(b′) is the discounted cost of applying
a base policy π for a given number of stages t, starting from the
leaf node b′, followed by a terminal cost function approximation
Ĵ(b̄). Here, b̄ is the belief state obtained at the end of the t steps
of application of the base policy starting from b′. In other words,
we truncate the system trajectory at the belief state b̄, and we
approximate the cost of the remainder of the trajectory with
Ĵ(b̄).

The truncated rollout algorithm involves a few parameters: the
lookahead length l, the length of the simulated trajectory before
truncation t, the choice of the base policyπ, and the terminal cost
function approximation Ĵ . The parameters l and t are usually
chosen based on a tradeoff between implementation complexity
and obtained performance. The base policy can be a greedy
policy, and the terminal cost function approximation Ĵ(b̄) can be
an estimate of the cost function of the base policy or an estimated
steady-state cost from the belief state b̄, or it may be simply set
to 0. The paper [9] (Prop. 1) provides theoretical performance
bounds on the policy improvement of the truncated rollout
algorithm. These bounds indicate, among others, that increasing
the lookahead length l improves the rollout performance bound.
Moreover, they state that the performance of the rollout policy
π̃ improves over the base policy π as the terminal cost function
approximation Ĵ gets closer to the base policy cost Jπ .

A. Standard Rollout (All-at-Once)

In the standard form of rollout with multiple agents, at
the current belief state b, we construct an l-step looka-
head tree where each branch represents a possible con-
trol vector u = (u1, . . . , um), where u� ∈ U�, � = 1, . . . ,m
(see [3]). The branch corresponding to control u is as-
sociated with a Q-factor corresponding to (b, u), which
is ĝ(b, u) + α

∑
z∈Z p̂(z|b, u)J̃(F (b, u, z)), the expression in

brackets in (1). The standard rollout algorithm chooses the
control that is associated with minimal Q-factor, cf., (1). This
rollout algorithm in the pure form, where J̃ is given by Jπ in (1)

Authorized licensed use limited to: University of Technology Sydney. Downloaded on September 17,2024 at 22:34:55 UTC from IEEE Xplore.  Restrictions apply. 



BHATTACHARYA et al.: MULTIAGENT REINFORCEMENT LEARNING: ROLLOUT AND PI FOR POMDP WITH APPLICATION 2007

Fig. 4. One-agent-at-a-time truncated rollout algorithm for two agents using base policy π with terminal cost approximation Ĵ on the reformulated state space
(b), (b, ũ1).

possesses the policy improvement property in an exact form

Jπ̃(b) ≤ Jπ(b)

whereπ is the base policy and π̃ is the rollout policy that does not
use a terminal cost approximation. Fig. 3 demonstrates standard
rollout with two agents, each having two possible control com-
ponents. The difficulty with this formulation is that the overall
rollout algorithm computation with 1-step lookahead is of order
O(Cm) at each stage, where C = max{|U1|, |U2|, . . . , |Um|}
is the maximum cardinality of the control component constraint
sets. To alleviate this difficulty, we will introduce next a mul-
tiagent variant of rollout, where the lookahead minimization is
performed one agent at a time, and the computation at each stage
is reduced to O(Cm).

B. One-Agent-at-a-Time Rollout (One-at-a-Time)

In order to reduce the algorithmic complexity of the stan-
dard rollout algorithm, the minimization over the control
branches in the abovementioned formulation needs to be
simplified. To achieve improved algorithmic complexity, we
introduce an equivalent problem formulation where the con-
trol u = (u1, u2, . . . , um) is broken down into its m compo-
nents. Given a belief state b, m intermediate states are gen-
erated such that the agents choose their control components
sequentially between the current belief state b and the next
belief state b′. Thus, the transition sequence from b and b′ is
{b, (b, u1), (b, u1, u2), . . . , (b, u1, u2, . . . , um−1), b

′} assuming
the agents choose their controls sequentially in a fixed order.
The last transition from (b, u1, u2, . . . , um−1) to b′ involves
the choice of the last component um and includes the cost
ĝ(b, u) of choosing control u = (u1, u2, . . . , um) at the current
belief state b. Every other intermediate transition has 0 cost. In
the reformulated problem, at each stage, the rollout algorithm
performsm sequential optimizations over Q-factors that involve
a single control component. The one-agent-at-a-time rollout
control thus produced is denoted by π̃(b) = (π̃1(b), . . . , π̃m(b)),
where π̃�(b) is the control component for agent � at belief state
b, � = {1, . . . ,m}. When optimizing over the Q-factors of the
component corresponding to agent �, we set u1, . . . , u�−1 to
π̃1(b), . . . , π̃�−1(b), the optimized values calculated earlier by
the rollout algorithm, and we set u�+1, . . . , um to the values

dictated by the base policy at belief state b

π̃�(b) ∈ arg min
u�∈U�

[
ĝ(b, u′) + α

∑
z∈Z

p̂(z|b, u′)J̃(F (b, u′, z))

]
(2)

where u′ = (π̃1(b), . . . , π̃�−1(b), u�, π�+1(b), . . . , πm(b)), and
π(b) = (π1(b), . . . , πm(b)) is the base policy’s control at b.

The per-stage complexity of this rollout algorithm is O(Cm),
which is a dramatic improvement over the exponential computa-
tional complexity of the (all-at-once) standard rollout algorithm.
Our numerical experiments are consistent with the theoretical re-
sults, namely that this computational economy is often obtained
with minimal loss of performance. The algorithm is illustrated
in Fig. 4.

In [3] and the research monograph [4], the one-agent-at-a-time
rollout method was shown to maintain the policy improvement
property of standard rollout in the perfect state observation case.
For the case of one-step lookahead, it was also shown that the
performance bounds for the standard and the one-agent-at-a-
time truncated rollout algorithms are identical (see Prop. 5.2.7
of [4]). These properties were proved for the perfectly observable
case where the number of states is finite. However, the arguments
of the proof do not depend on the finiteness of the state space and
can be extended to our POMDP case with infinite belief space.

C. Order-Optimized Rollout

We extend a variant of one-agent-at-a-time rollout called
order-optimized rollout (proposed in [4] for perfect state in-
formation) in the case of partial state observation. The one-
agent-at-a-time rollout algorithm assumes a fixed order chosen
a priori in which the agent control components are optimized.
However, the algorithm also works with any agent order, and
in fact, it also works if the order is changed at each stage.
Appendix A shows that the policy improvement property of
rollout holds if the order of agents changes at each round of
rollout. This motivates algorithmic variants where the agent
order is approximately optimized at each stage. An effective
and relatively inexpensive way to do this is to first optimize
over all single agent Q-factors, by solving the m minimization
problems that correspond to each of the agents � = 1, . . . ,m
being first in the one-agent-at-a-time rollout order. If �1 is the
agent that produces the minimal Q-factor, we fix �1 to be the first
agent in the one-agent-at-a-time rollout order. Then we optimize
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over all single agent Q-factors, by solving the m− 1 Q-factor
minimization problems that correspond to each of the agents
� �= �1 being second in the one-agent-at-a-time rollout order. If
�2 is the agent that produces the minimal Q-factor, we fix �2
to be the second agent in the one-agent-at-a-time rollout order,
and continue in this manner. In the end, after m(m+ 1)/2 min-
imizations, we obtain an agent order �1, . . . , �m that produces a
potentially reduced Q-factor value, as well as the corresponding
rollout control component selections. Based on our experimental
results, agent order optimization produces modest, but consistent
performance improvement over the case of a fixed agent order.

V. MULTIAGENT APPROXIMATE PI

We will now discuss the approximate PI method as an exten-
sion to the rollout algorithm. The truncated rollout policy can be
considered as the base policy in PI. The policy evaluation is done
in an online fashion by 1-step lookahead minimization over the
simulated trajectories (using t times base policy π application
followed by an optional terminal cost approximation Ĵ) at each
stage. The subsequent iterations can be expedited by replacing
the online evaluation of the rollout policy with an approximation
architecture (namely, a neural network). See [5], Sections 2.1.5
and 5.7.2. Here, the newly trained approximation architecture for
the rollout policy serves as the subsequent base policy for the
next iteration. Using the multiagent truncated rollout as a basis,
we now describe corresponding approximate PI algorithms.

A. Approximate PI With Truncated Rollout

This algorithm uses standard rollout to generate the belief
state–rollout control pairs to train the policy network in each
iteration. We define a parametric policy approximation π̂(b, r̄),
that produces a control given a belief state b, where r̄ is the
parameter of the approximation architecture. For example, a
neural network can be trained with a large set consisting of q
belief state–control pairs (bs, ũs), s = 1, . . . , q, in a supervised
learning fashion, where r̄ may include the weights of each layer.
We can estimate the rollout control ũs from a belief state bs

and add it to the training set. The training process solves an
optimization/classification problem using the training set and
generates a neural network-based approximation π̂(., r̄) for the
rollout policy, which in turn is used as the base policy for the
next iteration. This was proposed in the context of PI for the
perfect observation case in the paper [32], and is also described
in the book [5], Section 3.5. The corresponding computation
is expensive, especially for a large number of agents, using Cm

Q-factors. Instead, we extend this idea for the one-at-a-time case
discussed next.

B. Approximate PI With Truncated One-Agent-at-a-Time
Rollout (One-at-a-Time API)

This algorithm uses the one-agent-at-a-time rollout scheme to
train the parametric architecture for policy space approximation.
Given a belief state bs, the one-agent-at-a-time rollout algorithm
produces one agent’s control component ũs

� , � ∈ {1, . . . ,m} at
a time. Each component ũs

� of the rollout policy, starting from

Fig. 5. Approximate policy iteration based on multiagent rollout and approx-
imation in policy space. This figure is adapted from [9], which we extend by
applying the one-at-a-time rollout in the policy improvement phase for tackling
multiple agents (not given in [9]).

� = {1, . . . ,m} is given by the following equation at each stage:

ũs
� ∈ arg min

u�∈U�

[ĝ(bs, u′s)+α
∑
z∈Z

p̂(z | bs, u′s)J̃ (F (bs, u′s, z))]

where u′s = (ũs
1, . . . , ũ

s
�−1, u�, π�+1(b

s), . . . , πm(bs)). Here,
π(bs) = (π1(b

s), . . . , πm(bs)) denotes the base policy’s control
at belief state bs. At the end of m such optimizations, we
construct the entire rollout control ũs = (ũs

1, . . . , ũ
s
m). All pairs

of (Bs
� , ũ

s
�) for � = {1, . . . ,m}, s = {1, . . . , q}, where Bs

� =
(bs, �, ũs

1, . . . , ũ
s
�−1, π�+1(b

s), . . . , πm(bs)) are used to train
the approximation architecture and obtain the policy network
π̂(., r̄). The policy network is trained with q ·m samples in total.
To construct the entire control vector from the approximation
architecture in an iteration, we need to invoke the policy network
m times. For example, when estimating the first component ũ1 of
the rollout control ũ for a belief state b, we need to construct tu-
ple B1 = (b, 1, π2(b), . . . , πm(b)). Invoking the policy network
π̂(B1, r̄)will produce the first rollout control component ũ1. The
second component ũ2 of the rollout control is similarly estimated
by first constructing the tupleB2 = (b, 2, ũ1, π3(b), . . . , πm(b))
and invoking the policy network π̂(B2, r̄). Repeating this pro-
cess will produce the entire rollout control ũ = {ũ1, . . . , ũm}
(see Fig. 5). We discuss the approximate bound of convergence
for the approximate PI with the one-at-a-time rollout as the
policy improvement step in Appendix C.

C. Approximate PI With Truncated Order-Optimized Rollout

Similar to the previous variant, one can use the order-
optimized rollout scheme to generate the belief state–rollout
control pairs and train the approximate policy network. Apart
from that, this variant of approximate PI will exactly follow the
previous approximate PI method. Note that one-agent-at-a-time
rollout (as opposed to standard rollout) is used in all of our
approximate PI experiments.

VI. ONLINE PLAY POLICY

Given an offline trained policy, obtained through the use
of multiple approximate PIs, we can improve substantially its
performance with an online play algorithm that is based on
one-step or multistep lookahead minimization. In the context
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Fig. 6. Online play with the one-agent-at-a-time rollout using a base policy π̂(, .r̄p) and a terminal cost approximation Ĵ(, .r̄c) for two agents. The control
component u2 used in the first optimization (left-hand side) is obtained after calling the network π̂(B2, r̄p) using feature B2, constructed from belief state b (see
Section V-B for feature construction for policy network).

of our problem, this can be done by implementing online a
truncated rollout algorithm with the offline trained policy used
as the base policy. The recent book [6] has focused on the
substantial beneficial effects of online play built on top of
offline training, and has interpreted the online play algorithm
as a fast/superlinearly convergent Newton step for solving the
Bellman equation of the problem. The starting point for the
Newton step is provided by the cost function of the offline trained
policy, or more accurately, its neural network representation.

An additional benefit of policy improvement by online play
is that it works well with changing problem parameters and
online replanning, similar to classical methods of indirect adap-
tive control. When the problem parameters change, the policy
obtained offline by an approximate PI algorithm is degraded,
since it was trained with the old parameters. However, in the
online play algorithm, the Bellman equation is perturbed due to
the parameter changes, but approximation in value space still
operates as a powerful Newton step. An essential requirement
here is that a system model is estimated online through some
parameter identification method, and is used during the one-step
or multistep lookahead minimization process. It is not unreason-
able to assume that such a method is available within our context.

In our implementation, we have incorporated an online play
policy where controls are computed by employing an online
one-at-a-time truncated rollout using a policy π̂(., r̄p) as base
policy and a terminal cost approximation network Ĵ(., r̄c).
The parametric policy approximation with parameter r̄p, and
parametric cost approximation with parameter r̄c, are given by
training an offline one-at-a-time approximate PI algorithm.

Starting from a belief state b, we perform m online se-
quential optimizations, one agent at a time, � = {1, . . . ,m}, in
that order. First, we construct the base policy’s control π(b) =
(π1(b), . . . , πm(b)) by calling the policy network π̂(., r̄p) given
by one-at-a-time approximate PI method m times from belief
state b (as described in Section V-B). The online play policy’s
control is denoted by û = (û1, . . . , ûm) and the control compo-
nent of agent � is computed as

û� ∈ arg min
u�∈U�

[ĝ(b, u′) + α
∑
z∈Z

p̂(z | b, u′)J̃ (F (b, u′, z))]

where u′ = (û1, . . . , û�−1, u�, π�+1(b), . . . , πm(b)). The cost
approximation J̃(b′) at belief state b′ is the discounted cost
of t applications of the control given by the offline trained
policy, starting from belief state b′, followed by the terminal
cost approximation Ĵ(b̄, r̄c), where b̄ is the belief state after t

TABLE I
METHODS USED IN THE COMPARISON STUDY FOR SOLVING THE PARTIALLY

OBSERVABLE MULTIROBOT REPAIR PROBLEM

applications of the policy π̂(., r̄p) starting from b′. Note that
the control at each of the t stages is given by calling the policy
network π̂(., r̄p),m times. Fig. 6 shows an online play algorithm
with two agents. We present an extensive simulation study of the
online play policy on a large and complex POMDP problem. In
addition, we show that the online play policy largely overcomes
the difficulties of offline training in cases with dynamically
changing system parameters.

VII. SIMULATION STUDIES AND COMPARATIVE RESULTS ON A

MULTIROBOT REPAIR PROBLEM

In this section, we provide computational results and a com-
parative study with existing POMDP methods applied to a par-
tially observable multirobot repair problem. Our computational
results demonstrate that:

1) our one-agent-at-a-time rollout and order-optimized roll-
out result in substantial computational savings with com-
parable performance versus the standard rollout;

2) our one-agent-at-a-time approximate PI method improves
the policy over several iterations;

3) our methodologies applied to a complex multirobot repair
problem significantly outperform existing methods, and
work well where other methods fail to scale up (e.g., with
ten agents);

4) an online play policy that utilizes the offline trained policy
and cost approximations during online operation further
improves performance beyond our rollout methods and
our approximate PI.

Table I summarizes various methods used in the simulation
study in this section to solve the partially observable multirobot
repair problem.
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A. Multirobot Repair Problem

Here, we are interested in solving a challenging multirobot
repair problem on a partially observable network with several
damaged vertices where agents need to physically visit and carry
out the repair tasks. Our objective is to learn a coordinated
policy that determines the vertices that need to be repaired
before other vertices. Damaged locations in this problem can be
a proxy for many applications, from pipeline damage locations,
to forest fire threats, to damaged equipment sites in a grid. The
network is represented as an undirected graph with vertex set
V denoting locations, and each location v ∈ V has one of ν
damage levels (0, 1, . . . , ν − 1) that evolve over time according
to a known Markov decision process (MDP) with ν states,
as shown in Fig. 8. The transition probability γλ denotes the
probability of damage level λ evolving to damage level λ + 1,
λ = {0, . . . , ν − 2}. A nonzero transition probability from state
0 to state 1 (γ0 > 0) represents that a repaired location (with
damage level 0) can become damaged over time. This problem
is a generalized extension of the autonomous repair problem
discussed in paper [9]. The generalized graph topology and
possible decay of a repaired location make the problem in this
article a significantly more difficult infinite horizon problem than
that described in [9]. We assume perfect observations of the
agents’ current locations and of the damage levels at the agents’
current locations. The damage distribution for each location v
can be represented as dv = (dv0, . . . , d

v
ν−1), consisting of the

conditional probabilities of the damage level given the prior
initial belief and a control-observation history for all agents.
The shared belief state b consists of the locations of all m agents
β1, . . . , βm and damage distributions of all locations in the graph
dv, ∀v ∈ V . At each time step, once an agent at location v has
made an observation, it can either choose to stay in v and repair
the location (if damaged) or move to one of its neighboring
locations. The agents incur a cost per unit time whenever there
is nonzero damage in the network. The cost at stage k is given by∑

v∈V dv,k · c, where dv,k is the damage distribution at vertex
v at stage k and c is a cost vector (c ∈ Rν

0+) that maps each
damage level to a cost (we use c = [0, 0.1, 1, 10, 100] in our
experiments). The policy needs to minimize the discounted sum
of costs over an infinite horizon (

∑∞
k=0 α

k
∑

v∈V dv,k · c). This
is a POMDP with |V |mν |V | states since each of the m agents
can be located at any of the |V | locations, and each of the |V |
locations can take any one of the ν damage levels. This POMDP
has a variable control space depending on the location. The size
of the control space is upper bounded by (maxv∈V δv)

m, where
δv is the degree of vertex v. As a terminal cost approximation in
our multiagent rollout and approximate PI, we use a steady-state
value at the time of truncation at stage k′, which is the discounted
cost sum over an infinite horizon, assuming that no further con-
trol is applied beyond stage k′, Ĵ = (1/(1− α))

∑
v∈V dv,k

′ · c.
This type of terminal cost works well when the lookahead tree
has a high branching factor or when simulating the trajectories
is fairly expensive.

1) Simulation Setup: We implement the multiagent rollout
methods on a graph topology (shown in Fig. 1) with 32 vertices
and four, eight, and ten agents (state space size 1028, 1034, 1037,

TABLE II
COST COMPARISON OF THE BASE POLICY, AND ONE-AT-A-TIME ROLLOUT

POLICY ON THE MULTIROBOT REPAIR PROBLEM

and control space size 625, 105.6, 107, respectively). We use the
transition probability values γ1 = 0.02, γ2 = 0.03, γ3 = 0.05,
γ0 = 0.01 and a discount factor α = 0.95 for all experiments
with eight and ten agents. After performing experiments with
different transition probabilities, we observe that if the dynamics
of the Markov chain are too fast, the optimal policy behaves like
the greedy policy (ignoring a mildly damaged location can result
in a quickly degraded damage level), and if the dynamics of the
Markov chain are too slow, the optimal policy prefers to fix
the most damaged location first. However, the optimal policy
produced with these transition probabilities shows nontrivial
behavior, e.g., it might choose to ignore a few nearby locations to
fix a highly damaged moderately distant location before wander-
ing off too far. A variant of the problem where a repaired location
remains repaired (γ0 = 0) is significantly easier for the agents to
solve, and this is used for comparative studies with other existing
methods. We use γ0 = 0, γ1 = 0.01, γ2 = 0.02, γ3 = 0.03, and
α = 0.99 for all experiments with four agents. The base policy
for each agent is chosen to be a relatively simple “greedy policy”
that does not require any problem-specific tailoring, whereby it
chooses to repair the current location (if damaged) and other-
wise takes one step toward the nearest damaged location. We
use Dijkstra’s shortest path algorithm to determine the nearest
damaged location and the next hop from each location. We
train the approximate PI architectures using the Harvard FASRC
cluster with Intel Xeon Cascade Lake CPUs (196 cores). All
costs reported are aggregated over 1000 random initial states.

2) Performance of Multiagent Rollout: Table II shows the
cost comparison between the base policy and the one-agent-at-
a-time rollout policy (with t = 10, and steady-state terminal cost
approximation). The results show that the one-agent-at-a-time
rollout performed significantly better than its base policy, which
is consistent with the rollout policy improvement property. The
right-hand side of Fig. 7 shows a sample trajectory of our rollout
policy, where agents coordinate by splitting their efforts to tackle
the repair problem most efficiently. This is in contrast to the base
policy, where agents duplicate repair efforts by moving through
the graph in concert (Fig. 7 left-hand side). An alternative
scenario involves initiating two agents in two different graph
sections, with one more severely damaged than the other. In this
case, a base policy keeps the agents in their corresponding initial
sections leading to longer repair times. In contrast, when using
our one-at-a-time rollout, the agent starting in a mildly damaged
section moves to more damaged section to assist other agents.

3) Performance of Our Approach on Larger Problems (Scal-
able Implementation): Notably, we apply the one-at-a-time
rollout to a much larger partially observable repair problem
with 500 vertices and 50 agents. We exploit the decomposition
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Fig. 7. Trajectories generated by a base policy (left) versus our one-agent-at-a-time rollout policy (right) on a network with several damaged locations. Note the
coordinated splitting behavior of the one-agent-at-a-time rollout policy in contrast to the base policy.

Fig. 8. Markov chain for the damage level of each network location. We use
γ0 > 0 for eight and ten agents, which is a generalization from [9] for a graph
topology where repaired locations can fall into disrepair. We use γ0 = 0 for all
experiments with four agents.

of the underlying graph structure to help scale our approach.
We consider a regular graph, with ten vertices and degree two,
where each vertex corresponds to a subgraph. We consider each
subgraph is a regular graph of degree three. We do not directly
apply one-at-a-time rollout to this case. Since each subgraph
imposes a partition of the graph, we exploit it to design a
highly parallel form of the one-at-a-time rollout. Here, each
agent computes the one-at-a-time rollout control by using the
computed controls of its predecessors that belong to the same
partition as itself. The rollout controls of agents belonging to
each partition are computed in parallel, independent of agents
from other partitions. A coordinated policy is produced by our
one-at-a-time rollout as opposed to a myopic greedy base policy
in this case (see Table II).

4) Performance of Coupling Transition Probabilities: So far,
we consider the transition probabilities to be spatially decoupled,
where the damage level of a location in the network is only
affected by the location’s previous damage level (given by
Markov chain in Fig. 8). Now, we consider that the damage level
of one location can affect the damage level of its neighboring
locations. In particular, we consider a Markov chain, whereγv

0 =
γ0 + γv

N , ∀v ∈ V . Here, γ0 is the original probability of degrad-

ing the damage level from 0 to 1, and γv
N =

∑
u∈N (v)

γ ′du
ν−1

|N (u)| .
This simply means that the probability of damage of a loca-
tion v increases according to the highest level of damage of a
neighboring location u ∈ N (v). γ′ is a parameter that gives how
aggressively the damage levels are coupled. The denominator of
the expression is chosen to normalize the probability according
to the location’s (vertex’s) degree. We perform experiments with
γ′ = {0, 0.05, 0.1} with four agents (see Fig. 9). A value of
γ′ = 0 is the case where the damage level of a location is not

Fig. 9. Cost comparison of the base policy, and the one-at-a-time rollout policy
on the spatially coupled multirobot repair problem. The parameter γ′ represents
how aggressively the damage levels are coupled.

affected by its neighbors (our original experiments). We observe
that one-agent-at-a-time works relatively better than the base
policy as the spatial coupling of the damage level increases
(higher value of γ′). This means that our approach, with the
lookahead optimization, makes better decisions in choosing the
right locations to repair sooner for a complicated scenario where
the damage level is not localized, and certain damage levels may
have devastating effect on the decision-making process.

5) Performance of Multiagent Approximate PI: The neural
network used for policy space approximation in the approximate
PI method has two hidden layers (256 and 64 ReLU units,
respectively) followed by a batch-norm layer. The output layer
is a softmax layer which provides the probability distribution
over the control components for an agent. The size of the output
layer is |V |+ 1 (one control component is to repair the current
location, and others represent the likelihood of traveling to each
vertex, one likelihood value for each v ∈ V ). We use RMSProp
optimizer (learning rate = 0.001). We use a one-agent-at-a-time
rollout (with t = 10) for policy improvement at each iteration.
We use 500,000 training samples to train the policy network in
each iteration. The training samples were generated by choosing
a random set of belief states, followed by sampling from a
memory buffer. Note that exploration issues are one of the
main challenges in this context, and various solutions have been
proposed to resolve this issue; see [32], [33]. To this effect, our
memory buffers consist of states generated by taking a few steps
from the initial state pool using one of the previous policies and
a randomized policy; see [5], Ch. 5.

Fig. 10 shows the performance of neural network policies
generated by approximate PI with eight and ten agents. The
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Fig. 10. Cost of base policy and several iterations of approximate PI with
one-at-a-time rollout on the multirobot repair problem.

results show that even with a large state and control space,
approximate PI with our one-agent-at-a-time rollout retains its
policy improvement property over several iterations. We note
that cost of policy after iteration four increases. This is typical
according to the theoretical bounds on approximate PI with
standard rollout and one-at-a-time rollout (Proposition 4.5.3 [5],
Appendix C, respectively) indicate that policies are improved
during the first few iterations before it enters an error bound and
then starts oscillating between the error bound.

6) Performance Comparison to Existing Methods: a) Base
policy, standard rollout: This section presents cost comparisons
of several existing methods with our one-agent-at-a-time rollout,
and our order-optimized rollout. Note that here we cap the
number of agents at 4 due to scalability issues (explosion in the
number of Q-factor evaluations) for several methods, including
standard rollout and POMCP [1]. In fact, due to scalability is-
sues, DESPOT [18] was unsuccessful for the four-agent problem
within a reasonable time limit (1 s per stage). For the same
time limit, POMCP was able to deal with the four agent case,
but not a larger number of agents due to a combination of
scalability problems involving computation time and memory
requirements. Fig. 11 (top) shows that standard rollout outper-
forms (cost) all other approaches, and our one-agent-at-a-time
rollout methods performed comparably well as the standard roll-
out with dramatically less computation (Fig. 11 bottom shows
the average run-time of end-to-end simulations). The per-stage
computational complexity of our one-agent-at-a-time rollout is
onlyO(4C), as opposed toO(C4) of the standard rollout, where
C = maxv∈V δv is given by the maximum degree of the network
topology. This performance behavior was observed on a broad
range of tests involving up to four agents. At the same time,
the standard rollout method could not solve the problem with
eight and ten agents due to the scalability issue. Furthermore, as
expected, our order-optimized rollout [with per-stage O(42 C)
computations] outperforms the one-agent-at-a-time rollout. No-
tably, all of our rollout algorithms outperform the base policy
significantly.

b) Comparison with SOTA (POMCP, MADDPG, PA-
POMCPOW): We compare our methods with three exist-
ing learning methods, POMCP [1], MADDPG [2], and PA-
POMCPOW [7]. POMCP uses MCTS-based lookahead. For
the implementation, we use default parameters for POMCP
(given in [18]), and we modify the code to use a closed form

Fig. 11. Comparison (cost at top and run-time at bottom) of POMCP, base
policy, rollout on the multirobot repair problem with four agents.

of the belief update governed by the Markov chain in Fig. 8
(with γ0 = 0). A single particle with weight = 1 is used to
represent the belief. Fig. 11 shows the cost comparison of our
methods with POMCP, which outperforms the base policy but
performs worse than our multiagent rollout methods. One of the
reasons is that using a long and sparse lookahead tree results
in poor Q-factor estimation in problems with a long planning
horizon. In contrast, our rollout methods use shorter lookahead
and more precise Q-factor estimation by simulations. We use
both the public source code provided by the MADDPG authors
and the Berkeley Ray RLLib implementation of MADDPG and
conducted an extensive hyperparameter search to tune its param-
eters. However, MADDPG was consistently outperformed by
the base policy for this multiagent repair problem and produced a
cost of 5520 (compared with 3277 for a base policy; see Fig. 11).
Our approach outperforms a method suitable for problems with
large action-space PA-POMCPOW [7] that applies an MCTS
with a widening window for search that considers a subset of
actions to explore at each stage based on the expected value
and the information gain of the action. We use the authors’
implementation of PA-POMCPOW and obtain a cost of 3251
with a thorough hyperparameter search. We choose the action-
value function for information gain associated with an action
at a belief state as the dot product of the damaged levels and
their distance from their nearest agent obtained after applying
the action. The result is consistent with the POMCP policy since
PA-POMCPOW applies an approximate version of POMCP.

7) Online Play Policy: We use the policy network training
using our one-at-a-time approximate PI after iteration four in
our online play policy (see the details of the policy network in
Paragraph 5). The cost network used in our online play policy
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Fig. 12. Performance and robustness study of the online play policy on the
multirobot repair problem with four agents, where the damage levels evolve
differently with different parameters of the Markov chain (shown in Fig. 8). The
original MDP uses γ0 = 0, γ1 = 0.01, γ2 = 0.02, γ3 = 0.03. The slow MDP
uses the parameters γ0 = 0, γ1 = 0.005, γ2 = 0.01, γ3 = 0.02, and the fast
MDP uses γ0 = 0, γ1 = 0.02, γ2 = 0.03, γ3 = 0.04. Offline policy and cost
approximations used in the online play policy are trained using approximate PI
with the original MDP parameters.

has three hidden layers (256, 256, and 128 ReLU units, respec-
tively) followed by a batch-norm layer and uses the RMSProp
optimizer (learning rate = 0.001). The cost network is trained
using 500,000 belief state-cost pairs, where the belief states are
the same as those used for the policy network training. The
cost samples are obtained by averaging the costs of several
simulated trajectories using the policy network starting from the
corresponding belief states. During online play, we compute the
control by employing a one-at-a-time rollout where we estimate
the Q-factors by 20 simulated trajectories, each by applying the
control given by the policy network t = 10 times, followed by
the cost network.

Fig. 12 show the performance of the base policy, the one-
agent-at-a-time rollout (without offline trained approximations),
the offline trained policy network using approximate PI, and
the online play policy that uses the offline trained policy and
cost networks in the multirobot repair problem with four agents.
The red bars of Fig. 12 use the original Markov chain shown
in Fig. 8 with parameters γ0 = 0, γ1 = 0.01, γ2 = 0.02, γ3 =
0.03. We note that the offline trained policy network, by itself,
is not as good as the online rollout with an initial base policy.
This behavior can be attributed to several approximation errors in
the approximate PI setting. However, using these offline trained
networks as the base policy (policy network) and the terminal
cost approximation (cost network), the online play policy for
the original Markov chain produces a cost of 1725. The online
play policy thus outperforms all of our rollout methods and other
existing POMDP methods (including 1905.6 for our one-agent-
at-a-time rollout and 3080.1 for POMCP; see Fig. 11) in the
multirobot repair problem with four agents.

We next demonstrate the robustness of the online play policy
that provides adaptive controls when system parameters differ
during the policy evaluation time from the parameters used
during the offline architecture training. In particular, once we
train the value and policy approximations using the original

Markov chain, we apply the trained architectures to two different
multirobot repair problems (four agents) with different transition
probabilities (denoted by fast Markov chain and slow Markov
chain). The slow Markov chain follows the Markov chain
shown in Fig. 8 with parameters γ0 = 0, γ1 = 0.005, γ2 = 0.01,
γ3 = 0.02, which means that any location with a damage level
has a smaller chance of evolving to the next damage level
than the original Markov chain. The fast Markov chain follows
the Markov chain shown in Fig. 8 with parameters γ0 = 0,
γ1 = 0.02, γ2 = 0.03, γ3 = 0.04, which means that any loca-
tion with a damage level has a higher chance of evolving to
the next damage level than the original Markov chain. Fig. 12
showcases the robustness of the online play policy, which is
evaluated using new parameters and compares the relative per-
formance with the original Markov chain. The policy approxi-
mation performs poorly during online evaluation using the new
parameters since the controls come from the policy trained with
the original parameters. The online play policy outperforms the
base policy and our one-at-a-time rollout in the multirobot repair
problem (both of which do not use offline trained architectures
and are evaluated online with new parameters). The results show
that the online play policy adapts to the new parameter changes
with online replanning while taking full advantage of offline
architectures.

VIII. CONSIDERATIONS FOR IMPERFECT COMMUNICATION

The methods discussed so far address the computational chal-
lenge of the multiagent sequential decision-making problems.
In this section, we focus our attention on another major chal-
lenge: imperfect communication between agents. We discuss
methods where agents do not need explicit communication
of the computed control components from the other agents.
Instead, agents use estimates of other agents’ controls by a
“signaling” policy that can be precomputed, along with their
state estimation. We define a signaling policy as a policy that
predicts the control components for other agents using heuristics
or approximation architectures without the exact knowledge of
other agents’ computed control components. By doing this, the
agents can obtain a significant computational speedup through
parallelization. The methods discussed in this section are called
approximate multiagent rollout (AMR) since agents select their
control components based on an imperfect estimate of other
agents’ control computations. We consider several modes of
communication. In the first case, we assume that agents share
the belief state but never share the computed controls. This case
is suitable when agents can access belief states that change more
slowly (once per time step) than controls that need to be shared
at a tighter timescale (several times per time step). In the second
case, we assume that agents share the belief and intermittently
share the computed controls.

A. AMR when control is never shared

In this strategy, we do not consider any communication of con-
trols between the agents. Here,m independent minimizations are
performed, once over each of the agent’s control components,
with a signaling policy to estimate the control components of
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the other agents coming before the corresponding agent in the
agent order. Such an AMR with a signaling policy gives a control
ū = (ū1, . . . , ūm) at belief state b. Agent �’s control component
is

ū� ∈ arg min
u�∈U�

[ĝ(b, u′) + α
∑
z∈Z

p̂(z | b, u′)J̃ (F (b, u′, z))] (3)

where u′ = (¯̄u1, . . . , ¯̄u�−1, u�, π�+1(b), . . . , πm(b)). Here, con-
trol components ¯̄u1, . . . , ¯̄u�−1 are given by the signaling pol-
icy, which agent � uses as a proxy to the computed con-
trol components of agents {1, . . . , �− 1}. The control π(b) =
(π1(b), . . . , πm(b)) denotes the base policy’s control at belief
state b.

B. AMR when control is intermittently shared

In this strategy, we consider a centralized cloud server having
access to the global control information with an intermittent
connection probability of ρ ∈ (0, 1). We denote this hybrid pol-
icy as πhybrid, and it works in the following manner. Each agent
can access the computed control components of the predecessor
agents and compute the one-agent-at-a-time rollout’s control
given by π̃ [using (2)] with a probability ρ when the cloud is
accessible. The hybrid policy uses another policy πnocloud with a
probability 1− ρ

πhybrid(b) =

{
π̃(b) with probability ρ

πnocloud(b) with probability 1− ρ.
(4)

Control πnocloud(b) can be given by a policy that does not require
the exact computed control components of the other agents.
Examples of such a control πnocloud(b) include the base policy’s
control π(b), and the AMR with a signaling policy (3). This
hybrid communication method is similar to the one analyzed
in [34].

C. Challenges in Imperfect Communication Cases

Imperfect communication among the agents poses some
unique challenges, including the loss of the policy improvement
property and the issue of failure to terminate. In the multirobot
repair problem, we consider the state of termination when there
are no more locations left to repair.

A nontermination case is more perturbing than the loss of
policy improvement property since the cost of a nonterminating
policy can be very large, even for a properly discounted problem.
We note that reaching termination is significantly easier for the
case where a repaired location cannot fall into disrepair (indi-
cated by the Markov chain in Fig. 8, with γ0 = 0). Alternatively,
termination is hard to achieve in the case where a repaired loca-
tion may evolve to a higher damage level over time (indicated
by the Markov chain in Fig. 8, with γ0 > 0). For the analytical
arguments for the finite termination case, we will restrict
ourselves to the case where a repaired location does not fall into
disrepair.

In Section VIII-D, we show that termination is not guaranteed
when agents never share their controls, and each agent uses the
base policy as signaling to estimate other agents’ controls. In

Section VIII-E, we show that termination is possible for the mul-
tirobot repair problem in the case of no control communication
by exploiting randomization of the control policy, in addition to
the rollout with base policy signaling. Finally, in Section VIII-F,
we consider a centralized, intermittently available cloud server
that retains the computed control components of all agents. We
show that the policy improvement property is recoverable using
a hybrid policy that uses the one-at-a-time rollout with one-step
lookahead optimization when the controls are communicated
and uses the base policy (without any signaling policy) when
the controls are not communicated. We provide an extensive
simulation study on imperfect communication applied to the
multiagent repair problem in Section VIII-G, where belief states
are shared, but the computed controls are not perfectly shared,
and in Section VIII-H, where both belief states and the computed
controls are imperfectly shared.

D. Failure to Terminate With No Communication of Controls

The AMR method faces a major challenge, where agents may
not attain termination for certain initial belief states in the case
of no communication of computed controls. In particular, we
discuss the AMR where agents estimate other agents’ controls
using the base policy. The control ū = (ū1, . . . , ūm) given by
this policy at belief state b, is obtained using (3), where u′ =
(π1(b), . . . , π�−1(b), u�, π�+1(b), . . . , πm(b)). Here, π(b) =
(π1(b), . . . , πm(b)) is the base policy’s control at belief state
b. The future cost is J̃(F (b, u′, z)) is the cost of applying base
policy π until termination, starting at belief state F (b, u′, z).

We will use a counterexample to show that an agent executing
the AMR without any communication of controls and estimates
other agents’ controls using the base policy as signaling may
not attain termination in a finite time. In this counter example,
we consider a group of agents wanting to visit several partially
damaged locations in a discrete space. In addition, we consider
the damage levels of the locations are independent of other
locations, and once repaired, do not fall into disrepair (see the
Markov chain in Fig. 8 with γ0 = 0). An agent can visit one of
its adjacent locations in a single time step. The terminal state is
reached when all damaged locations are visited.

This problem is a simplified instance of several real-world
multiagent sequential decision problems with spatial controls,
including multirobot repair, search and rescue, and taxicab
pickup problems. In the AMR, the agents do not share their
computed control components but estimate the other agents’
controls using a signaling policy. A bad signaling policy may
fail to estimate other agents’ controls correctly. Examples of
such bad signaling policies in this problem instance include a
greedy base policy that directs an agent to its nearest partially
observable damaged location. In this case, each agent that per-
forms the control optimization with base policy signaling may
choose a control that drives it away from its nearest partially
observable damaged location, when it observes the presence of
another agent equidistant from its nearest partially observable
damaged location. Each agent (equidistant from their nearest
partially observable damaged locations) will assume that the
other agent(s) will visit that location, and as a result, none of
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Fig. 13. Trajectory of the base policy that moves an agent toward its nearest
partially visible damaged location with no communication with other agents
(takes four steps to visit all damaged locations).

Fig. 14. Trajectory of the one-at-a-time rollout, where the second agent makes
a control decision with the knowledge of the first agent’s computed control (takes
two steps to visit all damaged locations).

Fig. 15. Partial view of a nonterminating trajectory with the AMR using base
policy signaling (no communication of controls). At each step, an agent thinks
that the other agent will visit the nearest partially observable damaged location,
and moves away from it and the two agents oscillate infinitely.

them will visit the nearest partially observable damaged location.
This behavior can continue infinitely, thereby not terminating the
problem in a finite time.

Figs. 13 and 14 show the trajectories followed by the base
policy, and the one-agent-at-a-time rollout using two agents that
want to visit two partially observable damaged locations at the
two ends of a linear graph with four vertices. Fig. 15 shows a
partial view of an infinitely long trajectory given by the AMR
that does not share computed control components among agents;
instead, each agent estimates other agents’ control using the base
policy. In the next section, we show that termination is possible
with a simple modification to the approximate rollout with base
policy signaling in the case of no control communication.

E. Finite Termination Without Communication of Controls by
Using Randomization of the Policy

In this section, we address the problem of nontermination with
no communication of controls by using a randomized control
policy. We consider a randomized multiagent rollout policy that
selects a control ūr as follows:

ūr =

{
ur with probability ε

ū with probability 1− ε
(5)

where 0 < ε < 1, ur is a random control chosen
from U , and ū is the control given by the AMR
with base policy signaling using (3) by putting u′ =
(π1(b), . . . , π�−1(b), u�, π�+1(b), . . . , πm(b)). Here, π(b)
= (π1(b), . . . , πm(b)) is the base policy’s control at belief state

Fig. 16. Possible outcomes of the one-time application of the randomized
policy on a problem with two agents and two partially observable damaged
locations. The randomization ensures the agents do not get stuck into the infinite
limit cycle of nontermination since every single application of the randomized
policy has a positive probability of making progress toward termination in this
problem.

b, and the future cost J̃(F (b, u′, z)) is given by the cost of
applying the base policy π until termination, starting at belief
state F (b, u′, z). The intuition behind doing this is that most
of the time, the multiagent rollout with base policy signaling
makes good decisions to direct agents toward strategic locations,
except for rare cases where agents enter into a limit cycle with
no termination, as described in Section VIII-D. For these
cases, randomization helps break the oscillation and essentially
reinitializes, in a random fashion, the starting points of the
agents for the next decision. Fig. 16 shows possible outcomes
of a single application of this randomized policy that has a
positive probability of making progress toward termination with
two agents to visit two partially observable damaged locations
in a linear graph, where a repaired location does not fall into
disrepair.

Now, we discuss how randomization resolves the issue of
nontermination in our AMR scheme that does not use any control
communication for a problem where the agents need to visit a set
of damaged vertices in a finite graph. In particular, we consider
m agents that aim to visit η vertices on a given finite connected
graph G = (V,E), where η ≤ |V |. The vertex set V denotes the
physical locations, out of which η vertices are believed to be
damaged, and E is the edge set defined over the vertices. Once
visited, a damaged vertex is automatically repaired and does not
fall into disrepair. The problem terminates when all η damaged
vertices are visited. We will argue that an agent executing the
randomized multiagent rollout with base policy signaling (5),
and without communication of controls leads to termination in
a finite time in this problem.

To prove finite termination with randomization, we first re-
formulate the original problem that uses the randomized policy
as a modified Markov chain. We state the conditions where the
Markov chain for the reformulated problem terminates in finite
time. We conclude the proof by showing that these conditions
are achievable in a finite connected graph.

Each state in the reformulated Markov chain corresponds to
a possible number of vertices (believed to be damaged) yet to
be visited. We denote the vertices with nonzero damage belief
as the target vertices in the graph. The states are denoted by
X0, X1, . . . , Xη , whereXχ denotesχ target vertices that remain
to be visited, χ = {0, 1, . . . , η}. X0 is the terminal state where
no more target vertices remain to be visited. We consider that
each state transition in the modified Markov chain is equivalent
to D applications of the randomized policy in the original
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Fig. 17. Reformulated Markov chain for a problem where agents need to visit
three target vertices. StatesX3,X2,X1,X0 denote 3, 2, 1, and 0 target vertex(s)
remain to be visited, respectively. Each state transition in this Markov chain is
equivalent to D applications of the randomized policy in the original problem.

problem. We denote this D as the step-size. The state transition
probability of the modified problem is given by

⎡⎢⎢⎢⎢⎣
Pη,η Pη,η−1 . . . Pη,0

Pη−1,η Pη−1,η−1 . . . Pη−1,0

...
... . . .

...

P0,η P0,η−1 . . . P0,0

⎤⎥⎥⎥⎥⎦
where Pχ,χ′ is the probability that after starting with χ unvisited
target vertices,χ′ target vertices remain to be visited by applying
the randomized policy (5) D times in the original problem,
χ, χ′ = {0, 1, . . . , η}. We assume that a visited (repaired) vertex
cannot fall into disrepair, or equivalently Pχ,χ′ = 0, 0 ≤ χ <
χ′ ≤ η. Thus, the state transition matrix becomes an upper
triangular matrix. Fig. 17 shows the reformulated Markov chain
with η = 3 target vertices.

Finite termination in the modified Markov chain is possible
if the steady-state probability of all the nonterminal states is 0.
We apply the steady-state convergence theorem [35] to show
that if all nonterminal states are transient, then a unique steady-
state distribution exists where the steady-state probability of
all the nonterminal states is 0, and the steady-state probability
of the terminal state is 1. All nonterminal states (X1, . . . , Xη)
are transient only if each diagonal entry corresponding to the
nonterminal states in the state transition matrix is less than 1. In
particular, the finite termination in this Markov chain is possible
when Pχ,χ < 1, where 0 < χ ≤ η for the choice of the step-size
D, since we already established that the state transition matrix
is upper triangular (Pχ,χ′ = 0, where 0 ≤ χ < χ′ ≤ η).

So far, we prove that the modified Markov chain terminates
in finite time if Pχ,χ < 1, where 0 < χ ≤ η. In other words, the
original problem terminates with the randomized policy if ∃D,
such that there is a positive probability that at least one target
vertex will be visited after D applications of the randomized
policy in the original problem. Now it is only left to prove the
existence of D for our problem that involves a finite graph.
We prove such D exists by using the properties of a finite
graph (with a finite diameter) and the nature of the randomized
policy that applies a randomized control with a probability
of ε. The finite, connected graph G = (V,E) in the original
problem guarantees at least one path between two given vertices
v1, v2 ∈ V exists with length at most the diameter of the graph
D = maxv1,v2∈V shortest_path_length(v1, v2). We denote such
a path by ρv1,v2

, and the set of all such paths by Pv1,v2
. The

probability that an agent at v1 visits v2 in D applications of the

randomized policy in the original problem

>
∑

ρv1,v2
∈Pv1,v2

∏
v∈ρv1,v2

ε

δv

≥
∏

v∈ρv1,v2

ε

δv
[where ρv1,v2

∈ Pv1,v2
]

≥
∏

v∈ρv1,v2

ε

maxv δv
≥

(
ε

maxv δv

)D
> 0. (6)

The first step comes from the fact that an agent located at vertex
v ∈ ρv1,v2

that applies the randomized policy (5) moves to the
next vertex in the path ρv1,v2

, adjacent to v, with a probability
of at least ε

δv
(where δv is the degree of vertex v). The second

inequality in the second line holds since there is at least one path
in Pv1,v2

due to the graph being connected. Hence, the sum of
probabilities of reaching v2 from v1 using all paths in Pv1,v2

is
at least as big as the probability of reaching v2 from v1 using one
path ρv1,v2

∈ Pv1,v2
. The fourth inequality holds since the path

length of ρv1,v2
is ≤ D. The fifth inequality holds since ε > 0,

and both D and maxv δv are finite.
Expression (6) ensures that there is a positive probability

that an agent moves from a given vertex v1 to visit a target
vertex v2 within D applications of the randomized policy in the
original problem. In other words, there exists a finite step-size
D equal to the diameter of the graph (D), which ensures a
probability strictly less than one that no target vertex is visited
in one state transition of the modified problem, i.e., Pχ,χ <
1, ∀χ = {1, . . . , η}. The fact Pχ,χ < 1, ∀χ = {1, . . . , η} that
implies all nonterminating states are transient, in conjunction
with the steady-state convergence theorem [35], proves the finite
termination with the randomized policy in a finite graph.

Here, we prove that a randomized policy can recover finite
termination without any communication of controls. However,
we may not claim the policy improvement property for the
randomized policy in the case of no control communication.
The following section discusses an imperfect communication
architecture where controls can be shared intermittently, that
recovers the policy improvement property.

F. Policy Improvement Property With Intermittent
Communication of Controls

So far in the case of imperfect communication, we consider
that controls are not shared with other agents. In this section,
we discuss an AMR scheme, where controls are intermittently
shared. The resulting policy recovers the policy improvement
property with intermittent communication of controls. We fur-
ther consider that the base policy (π) is used when the controls
are not communicated. Particularly, the hybrid policy (4) takes
the form

πhybrid(b) =

{
π̃(b) with probability ρ

π(b) with probability 1− ρ.
(7)

The control π̃(b) = (π̃1(b), . . . , π̃m(b)) is given by the one-
agent-at-a-time rollout policy using (2) at belief state b. In the
pure form, we replace the cost function J̃(F (b, u′, z)) in the

Authorized licensed use limited to: University of Technology Sydney. Downloaded on September 17,2024 at 22:34:55 UTC from IEEE Xplore.  Restrictions apply. 



BHATTACHARYA et al.: MULTIAGENT REINFORCEMENT LEARNING: ROLLOUT AND PI FOR POMDP WITH APPLICATION 2017

Fig. 18. Possible outcomes of πhybrid policy with intermittent control commu-
nication with two agents and two partially observable locations. All damaged
locations are visited faster than the base policy.

right-hand side of (2) by Jπ(F (b, u′, z)). Jπ(F (b, u′, z)) is the
cost of applying the base policy π starting at the belief state
F (b, u′, z) till termination. We will use the one-step lookahead
one-at-a-time rollout in the pure form in this section, that is

π̃�(b) ∈ arg min
u�∈U�

[
ĝ(b, u′) + α

∑
z∈Z

p̂(z|b, u′)Jπ(F (b, u′, z))

]
(8)

where u′ = (π̃1(b), . . . , π̃�−1(b), u�, π�+1(b), . . . , πm(b)).
Fig. 18 shows the hybrid policy πhybrid applied to a problem
where two agents want to visit two partially observable damaged
locations at the two ends of a linear graph of four vertices.
We note that agents visit all locations that are believed to be
damaged in 2 time steps with a probability of ρ, and 4 time
steps with a probability of 1− ρ. In expectation, the hybrid
policy πhybrid needs 2ρ+ 4(1− ρ) steps to visit both locations;
faster than the base policy, that takes four steps if ρ > 0.

Now, we show that the AMR with intermittent communication
of controls, where the base policy is used without commu-
nication of controls, improves cost over the base policy. For
this hybrid policy, denoted by πhybrid [defined in (7)], we have
Jπhybrid(b) ≤ Jπ(b), ∀b.

Here, Jπhybrid(b) and Jπ(b) denote the costs of applying the
hybrid policy πhybrid and the base policy π, starting at belief state
b until termination, respectively. The policy improves when the
probability of connecting to the cloud server ρ > 0. With ρ = 0,
the policy πhybrid is given the base policy π.

We first define the Bellman operator T for a cost function
J , policy π, and belief state b, as , (TπJ)(b) = ĝ(b, π(b)) +
α
∑

z∈Z p̂(z|b, π(b))J(F (b, π(b), z)).
The cost of policy π, at state b, can be ex-

pressed recursively, Jπ(b) = ĝ(b, π(b)) + α
∑

z∈Z p̂(z|b,
π(b))Jπ(F (b, π(b), z)).
Jπ(b) can also be given in terms of the Bellman operator

T , Jπ(b) = limK→∞(TK
π J)(b), ∀b.(TK

π J)(b) is the discounted
sum of stage costs starting at belief state b, where the Bellman
operator T for policy π is applied K times, followed by the cost
approximation J .

We prove the policy improvement property of policyπhybrid for
two agents. It is straightforward to extend the argument for m >

2 agents. We first show that (Tπhybrid
Jπ)(b) ≤ Jπ(b), ∀b, which

is essential in showing (TK
πhybrid

Jπ)(b) ≤ Jπ(b), ∀b, for a finite
K. Finally, taking the limit K → ∞, we show that Jπhybrid(b) =

limK→∞(TK
πhybrid

Jπ)(b) ≤ Jπ(b), ∀b.
In order to show (TπhybridJπ)(b) ≤ Jπ(b), we expand

(TπhybridJπ)(b), the Bellman operator for the policy πhybrid and
the cost approximation Jπ . Now for all belief states, b, we have

(TπhybridJπ)(b) = ĝ(b, πhybrid(b)) + α
∑
z∈Z

p̂(z|b,

πhybrid(b))Jπ(F (b, πhybrid(b), z)) (9a)

= ρ

[
ĝ(b, π̃(b)) + α

∑
z∈Z

p̂(z|b, π̃(b))Jπ(F (b, π̃(b), z))

]
+ (1− ρ)[ĝ(b, π(b))

+ α
∑
z∈Z

p̂(z|b, π(b))Jπ(F (b, π(b), z))] (9b)

= (1− ρ)Jπ(b) + ρ min
u2∈U2

[ĝ(b, (π̃1(b), u2))

+ α
∑
z∈Z

p̂(z|b, (π̃1(b), u2))Jπ(F (b, (π̃1(b), u2), z))] (9c)

≤ (1− ρ)Jπ(b) + ρ[ĝ(b, (π̃1(b), π2(b)))

+ α
∑
z∈Z

p̂(z|b, (π̃1(b), π2(b)))Jπ(F (b, (π̃1(b), π2(b)), z))]

(9d)

= (1− ρ)Jπ(b) + ρ min
u1∈U1

[ĝ(b, (u1, π2(b)))

+ α
∑
z∈Z

p̂(z|b, (u1, π2(b)))Jπ(F (b, (u1, π2(b)), z))] (9e)

≤ (1− ρ)Jπ(b) + ρ[ĝ(b, (π1(b), π2(b)))

+ α
∑
z∈Z

p̂(z|b, (π1(b), π2(b)))Jπ(F (b, (π1(b), π2(b)), z))]

(9f)

= (1− ρ)Jπ(b) + ρJπ(b) = Jπ(b). (9g)

Step (9a) is the definition of the Bellman operator for policy
πhybrid. Step (9b) expands line (9a) using the definition of the
policy πhybrid [see (7)]. Step (9c) (the first part of the summation)
and step (9g) come from the recursive definition of the cost of the
base policy π. Step (9c) (the second part of the summation) and
step (9e) come from the definition of the one-agent-at-a-time
rollout policy π̃ [see (8)]. Steps (9d) and (9f) come from the
minimization operations.

From the aforementioned derivation, we get (TπhybridJπ)
(b) ≤ Jπ(b), ∀b. This inequality gives us the following
relations. (TK

πhybrid
Jπ) (b) = (TK−1

πhybrid
) (Tπhybrid

Jπ) (b) ≤
(TK−1

πhybrid
Jπ)(b)=(T

K−2
πhybrid

)(Tπhybrid
Jπ)(b)≤(TK−2

πhybrid
Jπ)(b)=

(TK−3
πhybrid

) (Tπhybrid
Jπ) (b) ≤ (TK−3

πhybrid
Jπ) (b) ≤ . . . ≤

(Tπhybrid
Jπ)(b) ≤ Jπ(b). The cost of the policy πhybrid is,

Jπhybrid
(b) = limK→∞(TK

πhybrid
Jπ)(b) ≤ Jπ(b), ∀b.
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TABLE III
OUR METHODS USED IN THE IMPERFECT COMMUNICATION CASES

Next, we talk about the numerical results for our rollout
methods with various imperfect communication architectures.

G. Results on the Multirobot Repair Problem With Imperfect
Communication of Controls (Shared Belief States)

This section considers the case where agents cannot commu-
nicate their choice of control with others, although we assume
that the belief state is still shared. This case may arise when
agents have access to information that changes more slowly,
such as beliefs, but cannot necessarily share information at
tighter timescales, such as chosen controls. Although with the
shared belief state, agents can reconstruct the controls for all
other agents, it is computationally expensive for a decentralized
architecture where agents need to repeat work. Instead, using
a signaling policy helps with speed up by leveraging parallel
control computation. Next, we discuss cases where both belief
states and controls are shared imperfectly.

Simulation setup: Similar to the simulation setup in Sec-
tion VII-A, we use the Markov chain shown in Fig. 8 for dam-
age level degradation with parameters γ1 = 0.02, γ2 = 0.03,
γ3 = 0.05, γ0 = 0.01 , and α = 0.95, where a repaired location
may evolve to the next damage level for eight and ten agents.
We use γ1 = 0.01, γ2 = 0.02, γ3 = 0.03, γ0 = 0, andα = 0.99
for four agents (except for the comparison study with A3C3 [8])
where we use different values of α). We use t = 10 and the
steady-state terminal cost approximation for all AMR meth-
ods. Table III summarizes different architectures for imperfect
communication strategies we study. Each AMR method’s name
contains an abbreviation of the signaling policy, which the agents
use to estimate other agents’ computed control components. “I”
represents intermittent cloud server, and “LC” represents local
communication.

We consider several communication architectures with differ-
ent signaling policies where belief states are shared but controls
are not perfectly shared.

Fig. 19. Scenario for AMR-IAC where a subset of agents communicate with
each other. We apply one-agent-at-a-time rollout with the agent order {2, 4, 1},
and we apply the base policy for agent 3.

1) Approximate Multiagent Rollout With Base Policy Signal-
ing (AMR-B): This is the method where the agents estimate
other agents’ controls using the base policy. This represents the
extreme case of no communicated controls.

2) Approximate Multiagent Rollout With Neural Network
Signaling (AMR-N): In this approach, the predecessors’ control
components are predicted by a neural network that approximates
the one-agent-at-a-time rollout policy, and successors’ control
components estimated by the base policy. This also falls into the
extreme case of no communicated controls.

3) Approximate Multiagent Rollout With Best PI Policy Sig-
naling (AMR-PI): This approach is similar to AMR-N. Instead
of using the neural network policy that approximates the one-
agent-at-a-time rollout, the predecessors’ control components
are given by the neural network corresponding to one of the
approximate PIs (possibly the best iteration), and the base policy
is given by the previous PI.

4) Approximate Multiagent Rollout With Local Communica-
tion (AMR-LC): This approach considers a local communica-
tion scheme where the computed predecessors’ control compo-
nents are communicated among agents when the corresponding
agents are less than r hops away on a network, and all other
controls are estimated by the base policy.

5) Approximate Multiagent Rollout With Intermittent as well
as Local Communication (AMR-ILC): In this approach, we as-
sume intermittent connectivity to a centralized cloud server that
provides access to computed predecessors’ control components
with probability ρ > 0. With a probability 1− ρ, the method
assumes local communication with a radius of r. In other words,
when the cloud is available, the one-agent-at-a-time rollout is
performed, and otherwise, the method follows AMR-LC, as
described earlier. This architecture strikes a practical tradeoff
since it takes advantage of a rich centralized information source
whenever possible and uses clustered local communication
when the server is unreachable.

6) Approximate Multiagent Rollout With Intermittent Asyn-
chronous Agent Communication (AMR-IAC): In AMR-ILC, we
consider that controls always shared with other agent when-
ever the intermittent cloud is available. Now, we discuss an
AMR scheme, where each agent has an independent probability
p of sharing its computed control with other agents, thereby
inducing an agent communication graph. We consider P to
be the longest-directed communication path over all agents
{1, . . . ,m}. For example, in Fig. 19, the largest communication
path P = {2, 4, 1}, where the elements of P are indices of com-
municating agents. The one-at-a-time rollout is applied using
agent order given by P since each vertex (agent) in this path
can receive information from their corresponding predecessor
vertices. Agents not belonging to the path apply the base policy.
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TABLE IV
COST COMPARISON OF DIFFERENT MULTIAGENT ROLLOUT POLICIES WITH

IMPERFECT COMMUNICATION OF CONTROLS (WITH SHARED BELIEF)

The resulting policy recovers the policy improvement property
(see Appendix B). Fig. 19 shows an example where only a subset
out of four agents communicate. We show simulation results
with various communication probabilities p in Table IV.

Table IV presents performance results of different communi-
cation architectures with imperfect control sharing (but perfect
belief sharing) and compares them with our one-at-a-time rollout
with perfect communication for four, eight, and ten agents.
We observe that AMR-B gives worse performance than other
multiagent rollout methods. This is because it performs local
optimizations for each agent without any coordination, i.e., no
communicated controls. This method is also susceptible to oscil-
lations (as discussed in Section VIII-D). AMR-N performs better
since it uses a neural network to approximate the one-at-a-time
rollout policy, which is then used to estimate predecessor agent
controls. AMR-PI performs better than AMR-N, which can be
explained by its usage of better base and signaling policies.
AMR-LC works very well for our problem since the spatial
clustering of agents makes sense in this network repair context.
However, this approach is heavily dependent on the communi-
cation radius r (we use r = 2) and can exhibit poor behavior if
coordination is required across agent clusters (i.e., the damage is
in a distant part of the environment). The assumption of a local
communication radius may not be a practical assumption in other
multiagent POMDP problems. AMR-ILC performs best among
all other AMR approaches for a large number of agents (eight
and ten agents) by utilizing all predecessors’ controls whenever
available by means of accessing the centralized cloud. Naturally,
the cost of generated policy improves with better connection
probability ρ. The results suggest that our methods produce
intelligent policies in imperfect communication cases.

7) Comparison With Other Work in Partial Communication:
We compare our approach with a recent approach A3C3 [8],
where the agents learn to communicate using an actor–critic
framework. We apply A3C3 with four agents, where each agent
learns five and ten communication bits from every other agent.
We use the authors’ source code for A3C3 with a thorough
hyperparameter search. From Table V, we see that our AMR-B,
which provides the worst cost for the imperfect communication
cases, outperforms A3C3. We provide results for various dis-
count factors α since the authors use smaller α, including 0.01
for many tasks with four or more agents.

TABLE V
COMPARISON STUDY WITH A3C3 FOR FOUR AGENTS

TABLE VI
COST COMPARISON OF MULTIAGENT ROLLOUT METHODS WITH

INTERMITTENT BELIEF AND CONTROL SHARING WITH PROBABILITY ρ

H. Results on the Multirobot Repair Problem With Imperfect
Communication of Belief States and Controls

Here we consider the case where the agents do not share their
belief states and cannot communicate their choice of control
with one another at all times. Each agent knows its location and
can obtain a perfect observation of the damage at its location.
However, agents may not always perfectly perceive other agents’
locations and knowledge of their observations. In this way, each
agent may have a local belief state that is different from the true
global belief state. We consider the existence of a centralized
cloud server having access to the global belief states with an
intermittent connection probability of ρ ∈ (0, 1). If the cloud
is reachable, every agent synchronizes with the global belief
state. During that time step, the one-agent-at-a-time rollout is
performed with the computed predecessors’ control components
given by the cloud, and each agents’ belief state is evolved
forward using this information accordingly. If the cloud is not
accessible, the local belief corresponding to an agent evolves
by applying the locally computed control component and the
base policy’s control components for other agents. In this con-
text, we consider the following communication architectures
and perform an extensive performance simulation study. The
simulation setup related to the Markov chain dynamics and
rollout parameters used in this section is the same as that of
Section VIII-G. Each AMR method’s name includes the number
of optimizations performed by an agent when the belief and
controls are not shared.

1) Approximate Multiagent Rollout With Base Policy Signal-
ing and Intermittent Communication (AMR-IB1): If the belief
and control are not accessible via the cloud server, each agent
performs one optimization to estimate its own control compo-
nent evaluated at its local belief state, assuming other agents’
control components are given by the base policy.

2) Approximate Multiagent Rollout With Intermittent Com-
munication and Base Policy (AMR-IB0) w/o Optimization: If
the belief and control are not accessible via the cloud server,
each agent applies the base policy control evaluated at its local
belief state independently from the team (without estimating or
taking into consideration the actions of the other agents).
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Table VI shows the cost comparison between the base policy,
one-at-a-time rollout policy, and different architectures involv-
ing intermittent communication with imperfect belief and con-
trol sharing for four, eight, and ten agents. We observe that all
the multiagent rollout methods with intermittent communication
improve over the base policy, and the cost improves with a
better connection probability ρ. With a high probability ρ → 1,
the methods perform similar to the one-at-a-time rollout. With
a low probability ρ → 0, the methods produce similar to the
base policy. Interestingly, we see that for the same intermittent
communication probabilityρ, AMR-IB0 outperforms AMR-IB1
in some cases and, at the same time, reduces the computations
by a factor of m when the cloud is not reachable. In AMR-IB1,
each agent chooses its control component, thinking the other
agents will apply the base policy. This, in effect, might miss
some damaged locations before the global belief is shared. In
contrast, AMR-IB0 does not try to make any smarter moves until
the cloud is reachable and uses the base policy’s controls until
then. AMR-IB0 has less chance of missing a damage location
than AMR-IB1 and has better cost.

I. Discussion

Our results suggest that our multiagent rollout algorithm and
its variants are suitable for a practical class of multiagent systems
involving imperfect belief and control communication and im-
perfect state observation. Our methods take advantage of a cen-
tralized information source whenever possible and subsequently
leverage our computation efficient rollout methods. Our methods
are also extended in the case when the server is unreachable, and
agents select controls in a distributed fashion with imperfect
knowledge of the true global belief state. Such distributed com-
putation achieves significant speedup through parallelization. A
base policy can be a simple greedy or a heuristic-based policy
that performs reasonably well on a problem. For a discounted
infinite horizon problem, discussed in this article, the rollout
policy improves over the base policy, when the base policy is a
stationary policy [36], that produces same action on a given state
independent of the time of application. A base policy should
also maintain stability [6] such that the online rollout policy
maintains the performance improvement. A base policy is stable
as long as the stage costs are finite for a discounted infinite
horizon problem, and hence the total cost is uniformly bounded.
The comparison study signifies our approach provides a good
policy with a shorter lookahead tree with more precise Q-factor
estimation and by best utilizing the information available from
other agents. Other sample-based methods including POMCP,
PA-POMCPOW may fail to estimate Q-factor precisely due to
the use of a long and sparse lookahead tree optimization or a
sparse sampling of observations. Our comparison with MAD-
DPG, that follows a centralized training decentralized execution
philosophy, reveals that communicating during policy execution
is key for problems with fast dynamics like the multiagent repair
problem where damage levels are degraded rapidly unless a
cooperative policy is applied within a critical time frame. Other
gradient-based methods, including A3C3, may fail to learn a
good policy without explicit communication available from peer

agents. This is because learning to communicate messages with
an actor–critic framework can be very challenging in a complex
sequential repair problem, with a large horizon, large belief, and
control space.

J. Limitations and Future Directions

1) Discrete Space: In this article, we consider a discrete
environment represented by a known graph and discrete
control space for each agent. This article does not deal with
problems with continuous action space, including but not
limited to multiagent path finding problems, which we will
consider in the future.

2) Safety: It is important to note that an online policy needs
to follow safety considerations when applied to real-world
environments. However, we do not consider the safety
aspect in this article but we believe that it would be an
interesting direction of future study.

3) Delayed Communication: Although we do not focus on
a delayed communication setup in this article, AMR-IB0
and AMR-IB1 policies may be applied if the local beliefs
and control components are shared in finite intervals.
However, communication delays may involve various ad-
ditional challenges we intend to focus in the future.

IX. CONCLUSION

In this article, we present various multiagent rollout meth-
ods, approximate PI and online play policy with offline trained
approximations for handling challenging large-scale POMDP
problems. We experimentally verify the policy improvement
property of one-agent-at-a-time rollout, similar to standard roll-
out, with dramatically less computation requirements. Similarly,
we show that multiagent approximate PI improves the policy
at each iteration in order to find the approximately optimal
policy. We show that the online play policy enhances the solution
quality of offline trained architectures, especially for problems
with changing system parameters, by providing adaptive con-
trols. We present extensions of our multiagent rollout methods,
analytically justify their performance guarantees, and report
numerical results for the imperfect communication case. Based
on our results, the methods discussed here work well for robotics
problems, particularly when a large team of multiple robots
needs to collaborate on a complex task over long horizons,
with a large state space with partial observations and a large
action space (induced by a large number of agents), under partial
communication. Future extensions to our POMDP algorithms
include but are not limited to asynchronous communication
of the belief state, imperfect knowledge of the agents’ own
locations, and partitioning of the belief state space to achieve
distributed learning.

APPENDIX A
POLICY IMPROVEMENT WITH ARBITRARY AGENT ORDER

In this section, we show that policy improvement holds for a
random-order rollout in partially observable cases, by extending
the argument for policy improvement in order-optimized rollout
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for perfectly observable MDPs given in [4]. We show that the
cost of the one-at-a-time rollout improves the cost of the base
policy Jπ irrespective of the order of agents at each step with
two agents, but can be easily extended for more agents. We
consider the policy πro, that applies the one-at-a-time rollout to
optimize for agent 1’s control component followed by agent
2’s control component with a probability p1, and uses the
other agent order with a probability p2 = 1− p1. Using the
definitions of cost function Jπ , Bellman operator Tπ, we first
show that (TπroJπ)(b) ≤ Jπ(b), ∀b, which is needed to show
Jπro(b) ≤ Jπ(b). Now, for all belief b, (TπroJπ)(b)

= ĝ(b, πro(b)) + α
∑
z∈Z

p̂(z|b, πro(b))Jπ(F (b, πro(b), z))

= ĝ(b, (πro,1(b), πro,2(b))) + α
∑
z∈Z

p̂(z|b, (πro,1(b), πro,2(b)))

Jπ(F (b, (πro,1(b), πro,2(b)), z))

= p1minu2∈U2
[ĝ(b, (πro,1(b), u2))

+ α
∑
z∈Z

p̂(z|b, (πro,1(b), u2))Jπ(F (b, (πro,1(b), u2), z))]

+ p2minu1∈U1
[ĝ(b, (u1, πro,2(b)))

+ α
∑
z∈Z

p̂(z|b, (u1, πro,2(b)))Jπ(F (b, (u1, πro,2(b)), z))]

(by definition)

≤ p1[ĝ(b, (πro,1(b), π2(b)))

+α
∑
z∈Z

p̂(z|b, (πro,1(b), π2(b)))Jπ(F (b, (πro,1(b), π2(b)), z))]

+ p2[ĝ(b, (π1(b), πro,2(b)))

+α
∑
z∈Z

p̂(z|b, (π1(b), πro,2(b)))Jπ(F (b, (π1(b), πro,2(b)), z))]

= p1minu1∈U1
[ĝ(b, (u1, π2(b)))

+ α
∑
z∈Z

p̂(z|b, (u1, π2(b)))Jπ(F (b, (u1, π2(b)), z))]

+ p2minu2∈U2
[ĝ(b, (π1(b), u2))

+ α
∑
z∈Z

p̂(z|b, (π1(b), u2))Jπ(F (b, (π1(b), u2), z))]

(by definition)

≤ p1[ĝ(b, (π1(b), π2(b)))

+ α
∑
z∈Z

p̂(z|b, (π1(b), π2(b)))Jπ(F (b, (π1(b), π2(b)), z))]

+ p2[ĝ(b, (π1(b), π2(b)))

+ α
∑
z∈Z

p̂(z|b, (π1(b), π2(b)))Jπ(F (b, (π1(b), π2(b)), z))]

= p1Jπ(b) + p2Jπ(b)(by definition of Jπ)

= Jπ(b)(since p2 = 1− p1).

Now that we show (TπroJπ)(b) ≤ Jπ(b), ∀b, we have for a K ∈
N, the following, (TK

πro
Jπ) (b) = (TK−1

πro
) (TπroJπ) (b) ≤

(TK−1
πro

Jπ) (b) = (TK−2
πro

)(TπroJπ)(b) ≤ (TK−2
πro

Jπ)(b) =
(TK−3

πro
)(TπroJπ)(b) ≤ (TK−3

πro
Jπ)(b) ≤ . . . ≤ (TπroJπ)(b) ≤

Jπ(b). The cost of the policy πro is, Jπro(b) =
limK→∞(TK

πro
Jπ)(b) ≤ Jπ(b), ∀b.

APPENDIX B
POLICY IMPROVEMENT WITH PARTIAL COMMUNICATION

Here, we discuss that policy improvement property holds
for the AMR-IAC (described in Section VIII-G6). We consider
the agent communication graph G = (E,N), where is N
represents agents N = {1, . . . ,m} and a directional edge
ei,j ∈ E is present between agent i ∈ N to agent j ∈ N ,
if agent i can communicate with agent j. We denote an
ordering P of agents given by the largest path (with length
m̄) in the graph G. We reindex all m agents so that m̄
agents that belong to path P (the longest-directed path in
the agent communication graph) come before agents that do
not belong to P . We apply the one-agent-at-a-time rollout
to the first m̄ agents where the rollout order is given by
the agent order in path P , and all other m− m̄ agents
apply the base policy π. The resulting policy is πpartial(b) =
(π̄1(b), . . . , π̄m̄(b), πm̄+1(b), . . . , πm(b)), ∀b, where π̄� =
argminu�∈U�(b)

{ĝ(b, u′) + α
∑

z∈Z p̂(z|b, u′)Jπ(F (b, u′, z))},
with (� ≤ m̄), and

u′ = (π̄1(b), . . . , π̄�−1(b), u�, π�+1(b), . . . , πm(b)).

Using the definitions of cost function Jπ , Bellman operator Tπ,
we first show that (TπpartialJπ)(b) ≤ Jπ(b), ∀b, which is essential
in showing Jπpartial(b) ≤ Jπ(b), ∀b. Now, we define an operator
H(b, π(b), J) = (TπJ)(b). Now, for all belief b , we have

TπpartialJπ(b) = H(b, πpartial(b), Jπ)

= H(b, (π̄1(b), . . . , π̄m̄(b), πm̄+1(b), . . . , πm(b)), Jπ)

= minum̄∈Um̄
H(b, (π̄1(b), . . . , π̄m̄−1(b), um̄,

πm̄+1(b), . . . , πm(b)), Jπ)

≤ H(b, (π̄1(b), . . . , π̄m̄−1(b), πm̄(b), . . . , πm(b)), Jπ)

= minum̄−1∈Um̄−1
H(b, (π̄1(b), . . . , π̄m̄−2(b), um̄−1,

πm̄(b), . . . , πm(b)), Jπ)

≤ H(b, (π̄1(b), . . . , π̄m̄−2(b), πm̄−1(b), . . . , πm(b)), Jπ)

≤ . . . ≤ H(b, (π̄1(b), π2(b), . . . , πm(b)), Jπ)

= minu1∈U1
H(b, (u1, π2(b), . . . , πm(b)), Jπ)

≤ H(b, (π1(b), . . . , πm(b)), Jπ) = H(b, π(b), Jπ)

= TπJπ(b) = Jπ(b).

The aforementioned derivation gives (TπpartialJπ)(b) ≤
Jπ(b), ∀b. For a finiteK ∈ N, this inequality gives us the follow-
ing. (TK

πpartial
Jπ)(b) = (TK−1

πpartial
)(TπpartialJπ)(b) ≤ (TK−1

πpartial
Jπ)(b) =

(TK−2
πpartial

)(TπpartialJπ)(b) ≤ (TK−2
πpartial

Jπ)(b) = (TK−3
πpartial

) (TπpartialJπ)

(b) ≤ (TK−3
πpartial

Jπ)(b) ≤ . . . ≤ (TπpartialJπ)(b) ≤ Jπ(b). The cost
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of the policy πpartial is, Jπpartial(b) = limK→∞(TK
πpartial

Jπ)(b) ≤
Jπ(b), ∀b.

APPENDIX C
CONVERGENCE WITH API WITH ONE-AT-A-TIME ROLLOUT

In this section, we discuss convergence of approximate PI
with multiagent one-at-a-time rollout as the policy improvement
step by extending the convergence proof for approximate PI
with standard rollout given in the book [36], Proposition 5.1.4.
The book [36] gives the convergence proof for single agent
approximate PI with standard rollout, we extend that proof for
multiagent approximation PI with one-agent-at-a-time rollout.
Let π̃k be the approximate PI policy at iteration k where one-at-
a-time rollout is used in the policy improvement step, and Jπ̃k be
the cost of policy π̃k. In addition, we denote J̃k to approximate
the cost Jπ̃k at iteration k in the policy evaluation step. Policy
π̄k is the Approximate PI policy at iteration k where standard
(all-at-once) rollout is used in the policy improvement step, and
Jπ̄k is the cost of policy π̄k. For any iteration k, any cost function
J , the discount factor α, with 0 < α < 1 and with ||.|| to denote
max norm, ∃δ, ε, ε′ > 0, if the following assumptions hold:

||J̃k − Jπ̃k || ≤ δ (10a)

||Tπ̄kJ − TJ || ≤ ε (10b)

||Tπ̃kJ − Tπ̄kJ || ≤ ε′ (10c)

then cost Jπ̃k has the bound with the optimal cost J∗,
lim supk→∞ ||Jπ̃k − J∗|| ≤ ε′+ε+2αδ

(1−α)2 .

Proof sketch: Rewriting (10a) with max norm definition

Jπ̃k ≤ J̃k + δv, and J̃k ≤ Jπ̃k + δv (11)

where v is a vector of all 1’s. Applying the bellman operator T
for policy π̃k+1 on both sides of the left expression of (11)

Tπ̃k+1Jπ̃k ≤ Tπ̃k+1 J̃k + αδv (the contraction property of Tπ)

= (Tπ̃k+1 J̃k − Tπ̄k+1 J̃k) + (Tπ̄k+1 J̃k − T J̃k) + T J̃k + αδv

≤ T J̃k + (ε′ + ε+ αδ)v [from (10c)and (10b)]

≤ TJπ̃k + αδv + (ε′ + ε+ αδ)v [using right expression of

(11)and the contraction property of T ]

≤ Tπ̃kJπ̃k + (ε′ + ε+ 2αδ)v (since TJ ≤ TπJ )

= Jπ̃k + (ε′ + ε+ 2αδ)v (since TπJπ = Jπ).

From the aforementioned derivation, we get

Tπ̃k+1Jπ̃k ≤ TJπ̃k + (ε′ + ε+ 2αδ)v (12a)

Tπ̃k+1Jπ̃k ≤ Jπ̃k + (ε′ + ε+ 2αδ)v. (12b)

The cost of policy π̃k+1 is

Jπ̃k+1 = lim
K→∞

TK
π̃k+1Jπ̃k (from definition of Jπ)

= lim
K→∞

TK−1
π̃k+1 (Tπ̃k+1Jπ̃k)

≤ lim
K→∞

TK−1
π̃k+1Jπ̃k + αK−1(ε′ + ε+ 2αδ)v [from (12b)]

· · ·

≤ T 2
π̃k+1Jπ̃k + lim

K→∞
[(α2 + . . .+ αK−1)(ε′ + ε+ 2αδ)v]

= Tπ̃k+1(Tπ̃k+1Jπ̃k) +
α2

1− α
(ε′ + ε+ 2αδ)v

≤ Tπ̃k+1Jπ̃k +

(
α+

α2

1− α

)
(ε′ + ε+ 2αδ)v [from (12b)]

≤ TJπ̃k +

(
1 +

α

1− α

)
(ε′ + ε+ 2αδ)v [from (12a)].

From the aforementioned derivation, we get Jπ̃k+1 ≤
TJπ̃k + ε+ε′+2αδ

1−α v. Subtracting both sides with J∗ and tak-

ing max norm, ||Jπ̃k+1 − J∗|| ≤ ||TJπ̃k − J∗||+ ε+ε′+2αδ
1−α =

||TJπ̃k − TJ∗||+ ε+ε′+2αδ
1−α ≤ α||Jπ̃k − J∗||+ ε+ε′+2αδ

1−α . The
last two inequalities come from the fact TJ∗ = J∗ and the
contraction of T , respectively. Taking lim sup to both sides as
k → ∞, we get the desired result, lim supk→∞ ||Jπ̃k − J∗|| ≤
ε+ε′+2αδ
(1−α)2 .
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