W) Check for updates

Article

The International Journal of
Robotics Research

2024, Vol. 43(7) 10561080

© The Author(s) 2024

Article reuse guidelines:
sagepub.com/journals-permissions
DOLI: 10.1177/02783649231225977
journals.sagepub.com/home/ijr

S Sage

Kernel-based diffusion approximated Markov
decision processes for autonomous navigation
and control on unstructured terrains

Junhong Xu' ®, Kai Yin%, Zheng Chen', Jason M Gregory’ ®, Ethan A Stump® and
Lantao Liu'

Abstract

We propose a diffusion approximation method to the continuous-state Markov decision processes that can be utilized to
address autonomous navigation and control in unstructured off-road environments. In contrast to most decision-theoretic
planning frameworks that assume fully known state transition models, we design a method that eliminates such a strong
assumption that is often extremely difficult to engineer in reality. We first take the second-order Taylor expansion of the value
function. The Bellman optimality equation is then approximated by a partial differential equation, which only relies on the first
and second moments of the transition model. By combining the kernel representation of the value function, we design an
efficient policy iteration algorithm whose policy evaluation step can be represented as a linear system of equations
characterized by a finite set of supporting states. We first validate the proposed method through extensive simulations in 2D
obstacle avoidance and 2.5D terrain navigation problems. The results show that the proposed approach leads to a much
superior performance over several baselines. We then develop a system that integrates our decision-making framework with
onboard perception and conduct real-world experiments in both cluttered indoor and unstructured outdoor environments. The
results from the physical systems further demonstrate the applicability of our method in challenging real-world environments.

Keywords
Motion planning and control, off-road navigation, Markov decision processes, diffusion approximation, second-order HIB
equation, kernel methods

Received 12 March 2023; Revised 28 November 2023; Accepted 19 December 2023
Senior Editor: Tim Barfoot
Associate Editor: Joshua Marshall

original problem; on the other hand, if the discretization is
high in resolution, the result might be approximated well,
but this will induce prohibitive computational costs and
prevent real-time decision-making. Finally, the character-
istics of state space might be complex, and it is inappropriate
to conduct lattice-like tessellation, which is likely to result
in sub-optimal solutions. See Figure 1 for an illustration.
Another critical issue lies in MDP’s transition model,
which describes the probabilistic transitions between states.
However, obtaining an accurate probability distribution
function for robot motion transitions is oftentimes unrealistic,

1. Introduction

The decision-making of an autonomous mobile robot moving
in unstructured environments typically requires the robot to
account for uncertain action (motion) outcomes and at the same
time, maximize the long-term return. The Markov decision
process (MDP) is a very useful framework for formulating such
decision-theoretic planning problems (Boutilier et al., 1999).
Since the robot is moving in a continuous space, directly
employing the standard form of MDP needs a discretized
representation of the robot’s state and action. For example, in
practice, the discretized robot states are associated with spatial
tessellation (Thrun et al., 2000), and a grid-map-like repre-
sentation has been widely used for robot planning problems
where each grid is regarded as a discrete state; similarly, actions

"Indiana University-Bloomington, Bloomington, IN, USA
2Expedia Group, Austin, TX, USA

are simplified as transitions to traversable grids which are
usually the very few numbers of adjacent grids in the vicinity.

However, discretization can be problematic. Specifically,
if the discretization is low in resolution (i.e., large but few
numbers of grids), the decision policy becomes a very rough
approximation of the simplified (discretized) version of the

3Army Research Laboratory, Adelphi, MD, USA

Corresponding author:

Lantao Liu, Luddy School of Informatics, Computing, and Engineering,
Indiana University-Bloomington, 2401 N Milo B Sampson Ln, Room 080,
Bloomington, IN 47408, USA.

Email: lantao@jiu.edu

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/02783649231225977
https://journals.sagepub.com/home/ijr
https://orcid.org/0000-0001-7127-5093
https://orcid.org/0000-0002-3929-6422
https://orcid.org/0000-0002-6796-6817
mailto:lantao@iu.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F02783649231225977&domain=pdf&date_stamp=2024-01-19

Xu et al.

1057

Figure 1. In unstructured environments, the robot needs to make
motion decisions in the navigable space with spatially varying
terrestrial characteristics (hills, ridges, valleys, slopes). This is
different from the simplified and structured environments where
there are only two types of representations, that is, either
obstacle-occupied or obstacle-free. Evenly tessellating the
complex terrain to create a discretized state space cannot
effectively characterize the underlying value function used for
computing the MDP solution (Picture credit: NASA).

even without considering spatiotemporal variability. This is
another important factor that significantly limits the appli-
cability of MDP in many real-world problems. Reinforce-
ment learning (Kober et al., 2013) does not rely on a transition
model specification but requires a large number of training
trials to learn the value function and the policy, which can be
viewed as another strong and difficult assumption in many
robotic missions. Thus, it is desirable that the demanding
assumption of the known transition probability function can
be relaxed as some non-exact form and can be obtained
without cumbersome learning trials. This can be achieved by
leveraging the major characteristics of the transition proba-
bilistic distribution (e.g., moments or quantile of the distri-
bution), which typically can be obtained (well approximated)
from lightweight historical data or offline tests (Thrun et al.,
2000). If we only assume such “partial knowledge”—first
two moments—of the transition model, we must re-design the
modeling and solving mechanisms.

To address the above problems, we propose a diffusion-
approximated and kernel-based solution. Our primary focus
is to develop a theoretically-sound and practically-efficient
solution to compute the optimal value function in
continuous-state MDPs without requiring a full probabi-
listic transition model.

Our contributions can be summarized as follows:

¢ First, we apply the second-order Taylor expansion to the
value function to relax the requirement of fully known
transition functions. The Bellman-type policy evaluation
equation and the Bellman optimality equation are then
approximated by a diffusion-type partial differential
equation (PDE), which only relies on the first and second
moments of the transition probability distribution. The
solution of the Taylored Bellman optimality equation
can be viewed as an infinite-horizon discounted reward
diffusion process.

¢ Second, to improve both the efficiency and the flexibility
of the value function approximation, we use kernel
functions which can represent a large number of function
families for better value approximation. This approxi-
mation can conveniently characterize the underlying
value functions with a finite set of discrete supporting
states, leading to fast computation.

* Finally, we develop an efficient policy iteration algo-
rithm by integrating the kernel value function repre-
sentation and the Taylor-based diffusion-type
approximation to Bellman optimality equation. The
policy evaluation step can be represented as a linear
system of equations with characterizing values at the
finite supporting states, and the only information needed
is the first and second moments of the transition function.
This alleviates the need for heavily searching in
continuous/large state space and the need for carefully
modeling/engineering the transition probability.

The organization of the paper is as follows: we review
the relevant literature and provide background in formu-
lating stochastic planning problems and value function
approximation methods in Section 2 and 3, respectively. In
Section 4, we present the Taylored Bellman equation and
the proposed policy iteration algorithm. Section 5 provides
evaluation results for various important algorithmic prop-
erties of the proposed method. Then, we integrate the
perception into our framework to build an autonomy system
and demonstrate real-world experiments in Sections 6—8.
Finally, we conclude the paper and discuss insights learned
from the real-world experiments in Section 9. This paper
extends our prior conference publication (Xu et al., 2020) by
providing technical details to justify the methods within
Section 4, integrating up-to-date literature, and conducting
extensive experiments, particularly in real-world settings
delineated in Sections 6-8.

2. Related work

Our work closely relates to value-based methods for solving
MDPs and stochastic path and motion planning in robotics.
In this section, we provide concise surveys of the two fields
respectively and highlight our contributions at last.

2.1. Value-based methods for solving
continuous-state MDPs

Motion planning under action uncertainty can be framed as
an MDP with continuous state and action (Bertsekas 2012;
Sutton and Barto 2018). Many existing works rely on value-
based methods for solving MDPs. This approach focuses on
computing a value function from which the policy is derived
implicitly using the Bellman optimality equation. However,
the intractability of an exact value function representation
emerges when dealing with a large or continuous state
space, as it requires enumerating over an infinite-sized table

1058

The International Journal of Robotics Research 43(7)

that stores every state value. Thus, a large body of research
focuses on value function approximation techniques (Kober
et al., 2013; Sutton and Barto 2018).

One simple approach to approximating the value func-
tion is tessellating the continuous state space into finite
uniform grids. This method is popular in many robotic
applications (Al-Sabban et al., 2013; Baek et al., 2013; Fu
etal., 2015; Otte et al., 2016; Pereira et al., 2013). However,
this uniform tessellation approach does not scale well to
environments with complex geometric structures, and it
requires a large number of grids when the problem size
increases, known as the curse of dimensionality (Bellman
2015). A more advanced discretization technique that al-
leviates this problem is by adaptive discretization
(Gorodetsky et al., 2015; LaValle 2006; Liu and Sukhatme
2018; Munos and Moore 2002; Xu et al., 2019).

Alternative methods tackle this challenge by repre-
senting and also approximating the value function by a
linear combination of basis functions or some parametric
functions (Bertsekas and Tsitsiklis 1996; Munos and
Szepesvari 2008; Sutton and Barto 2018). The weights in
the linear combination can be optimized by minimizing the
Bellman residual (Antos et al., 2008). However, these
methods do not apply to complicated problems because
selecting a proper set of basis functions is non-trivial. This
weakness may be resolved through kernel methods
(Hofmann et al., 2008). Because the weights in a linear
combination of basis functions can be presented by their
product (through the so-called duel form of least squares
(Shawe-Taylor et al., 2004), the product may be better
replaced by kernel functions (on so-called reproducing
kernel Hilbert spaces) at supporting states. Once value
functions at supporting states are obtained, the approxi-
mation to the value function at any state is also determined.
In Deisenroth et al. (2009), the authors use a Gaussian
process with a Radial Basis Kernel (RBF) to approximate
the value function. This approach to approximating the
value function by kernel functions is referred as the direct
kernel-based method in this paper. There is a vast literature
on kernelized value function approximations in reinforce-
ment learning (Engel et al., 2003; Kuss and Rasmussen
2004; Taylor and Parr 2009; Xu et al., 2007). But few
studies in robotic planning problems leveraged this ap-
proach. A recent application of work (Engel et al., 2003) on
marine robots can be found in Martin et al. (2018).

More recently, due to the advancement of deep learing,
neural networks are proposed to approximate value functions
in high-dimensional state spaces (Arulkumaran et al., 2017)
such as images (Nair et al., 2018b) and high-dimensional
control problems (Lillicrap et al., 2015). Additionally, many
state-of-the-art reinforcement learning (RL) algorithms in-
tegrate value-based and policy gradient methods, known as
actor-critic (Schulman et al., 2017). Unlike the value-based
method, whose policy is derived implicitly, the actor-critic
framework learns a policy directly using the policy gradient
computed from the value function approximated by a neural
network. Through the integration of physics simulation, the

techniques within this framework have demonstrated suc-
cessful real-world applications, particularly in controlling
locomotion across unstructured terrains (Das et al., 2022;
Makoviychuk et al., 2021; Miki et al., 2022; Wang et al.,
2021). These methods rely on sampling to compute the value
function update via the Bellman equation. It can be sample-
inefficient because numerous next-state samples are typically
required to compute a Bellman update. In contrast, our
proposed method increases the sample efficiency by con-
verting the Bellman equation to a PDE. This operation
eliminates the need for sampling next states, requiring only
the evaluation of partial derivatives for Bellman updates,
bypassing the potentially expensive sampling process. We
demonstrate this property in Section 5.

Furthermore, all the above-mentioned existing ap-
proaches rely on fully known transitions in MDP, require
samples from the complex stochastic motion model, or rely
on careful selection of basis functions, which are difficult to
design in practice. Therefore, the challenge becomes how to
design a principled methodology without explicitly relying
on basis functions and without full knowledge of transitions
in MDP, which will be addressed in this work.

2.2. Deterministic and stochastic planning
in robotics

Most of the traditional robotic planning methods (see
Gammell and Strub (2021) for a recent survey) use a
simplified deterministic robot motion model, for example,
holonomic kinematics, to compute an open-loop path, for
example, sampling-based motion planners such as proba-
bilistic roadmap (PRM) and rapidly exploring random tree
(RRT) and their variants (Karaman and Frazzoli 2011;
LaValle 2006). Since the modeling error exists between the
model used in planning and the real world, the robot cannot
execute the path directly and requires a separate controller to
track the path. To ensure the path is trackable by the
controller, refining the planned path into a kinodynamically
trackable trajectory (Webb and Berg 2012) is necessary. One
strategy to generate such trajectories is based on trajectory
optimization. Existing trajectory optimization methods can
be categorized into hard-constrained methods and soft-
constrained methods. Using hard-constrained optimiza-
tion technique to solve trajectory generation problem has
been proposed by Mellinger and Kumar (2011), where
piecewise polynomial trajectories are generated by solving a
quadratic programming (QP) problem. A closed-form so-
lution is provided to solve an unconstrained QP problem,
and intermediate waypoints are added iteratively to ensure
the safety of the trajectories (Richter et al., 2016). Free space
represented by multiple geometric volumes, for example,
cubes (Chen et al., 2015; Gao et al., 2018), spheres (Gao
et al., 2019; Gao and Shen 2016), and polyhedra (Deits and
Tedrake 2015; Liu et al., 2017), are used to formulate a
convex optimization problem, which generates smooth
trajectories within the volumes. However, hard-constrained

Xu et al.

1059

methods ignore the distance information to the obstacle
boundaries and are prone to generate trajectories close to the
obstacles. This can cause collisions when the robot motion
model is imperfect. Such safety issue motivates the de-
velopment of the soft-constrained methods which leverage
the distance gradient during optimization such that the
trajectories could be adjusted to stay far from obstacle
boundaries while maintaining the smoothness property
(Oleynikova et al., 2016; Zhou et al. 2019, 2020).

The above design of the navigation system is based on
deterministic models at all levels, that is, from path planning
to trajectory optimization, and uncertainties in the motion
are entirely handled by the tracking controller. Such de-
coupled design is brittle because it is possible that the
feedback controller cannot stabilize on the open-loop path
computed by the planner. Therefore, to reduce the burden of
designing and tuning separate controllers for different en-
vironments, it is desirable to develop methods that directly
consider the action execution uncertainty during the plan-
ning phase if the error between the planning model and the
real-world action is large. This problem is particularly
obvious when the robot moves on rough terrains.

Early work of stochastic planning in the robotics community
was mostly built upon the sampling-based motion planning
paradigm. In Tedrake et al. (2010), the authors compute local
feedback controllers while adding new tree branches in the RRT
algorithm to stabilize the robot’s motion between two tree nodes.
A similar idea has also been exploited by Agha-Mohammadi
etal. (2014) with a different planner and controller. This method
considers both the sensing and motion uncertainty and uses the
linear-quadratic Gaussian (LQG) controller (Kalman et al.,
1960) to stabilize the motion and sensing uncertainties along
the edges generated by a PRM algorithm. Alternatively, Van
Den Berg et al. (2011) use the LQG controller to compute a
distribution of paths, from which the path is planned by the RRT
algorithm that optimizes an objective function based on the path
distribution. Instead of modular design of the planning and
control components, Huynh et al. (2016) propose a more in-
tegrated approach to solving the general continuous-time sto-
chastic optimal control problem. The method first approximates
the original MDP by a discrete MDP through sampling points in
the state space, and then a closed-loop policy is computed in this
discrete MDP. The approximation and solution are then refined
by iterating this sampling and solving procedure.

Model predictive control (MPC), or receding horizon
control, is another strategy to resolve motion uncertainty
(Bertsekas 2005; Rawlings et al., 2017). At each timestep, it
solves a finite-horizon optimal control problem and applies
the first action of the computed open-loop trajectory online.
To reduce computational burden, MPC usually uses a de-
terministic model to predict future states (Bertsekas 2012).
Robust MPC (Bemporad and Morari 1999) explicitly deals
with the model uncertainty by optimizing over feedback
policies rather than open-loop trajectories. However, this
optimization is computationally expensive. Thus, in prac-
tice, tube MPC that focuses only on a sub-space is often
used as an approximate solution to robust MPC (Langson

et al., 2004). Tube MPC for nonlinear robot motion models
is still an active research area. For example, sum-of-squared
programming (Majumdar and Tedrake 2013, 2017) and
reachability analysis (Althoff et al., 2008; Bansal et al.,
2017) are used for solving the nonlinear tube MPC problem.

In general, robot motion planning essentially requires to
reason about uncertainties during motion control. However,
because the prohibitive computation prevents the robot from
real-time decision, most of the traditional approaches to
generating feasible trajectories do not consider uncer-
tainties. Oftentimes some heuristics are leveraged to ensure
the motion safety during execution, for example, using the
soft-constrained methods. In contrast, our proposed
framework solves the stochastic planning problem in a
direct and integrative fashion. As a result, the computed
policy can naturally guide the robot with a large clearance
from the obstacles, without adding extra penalty in the
objective function which can be hard to specify in practice.
In addition, most existing methods that solve the stochastic
planning problems avoid the difficulties in directly com-
puting the optimal value function through using arbitrary,
for example, nonlinear or discontinuous, reward and tran-
sition functions. Different from that, the proposed approach
makes the direct computation possible in practice, which
opens a new line of work to solve stochastic motion
planning problems.

Emerging as a popular sampling-based MPC approach,
Model Predictive Path Integral (MPPI) control (Kappen
et al., 2012; Theodorou et al., 2010; Theodorou et al.
2010, 2010; Williams et al. 2017, 2018) also exhibits rel-
evance to our proposed method. This methodology has been
developed specifically to address finite-horizon stochastic
optimal control problems that conveniently allow arbitrary
cost functions and nonlinear system dynamics. It shares a
fundamental objective with our method, focusing on the
resolution of the second-order Hamilton—Jacobi—Bellman
(HJB) partial differential equation. Notably, MPPI corre-
lates between noise and control costs, utilizing the
Feynman—Kac formula to transform the HJB equation into a
path integral formulation. This transformation enables
MPPI to provide an MPC solution via a “forward” sampling
strategy. Contrastingly, our method diverges in approach by
leveraging a kernel representation of the value function.
This representation forms the foundation for our method-
ology to directly compute solutions to the HJB equation via
a policy iteration process. This differs our method from the
MPPI framework and lays the groundwork for potential
advancements and optimizations within the realm of sto-
chastic optimal control problems.

3. Preliminary background

3.1. Markov decision processes

We formulate the robot decision-theoretic planning problem
as an infinite-horizon discrete-time discounted MDP with
continuous states and finite actions. It is defined by a 5-tuple

1060

The International Journal of Robotics Research 43(7)

M=AE(S,A,T,R,y), where S={s}SR? is the
d-dimensional continuous state space and A = {a} is a
finite set of actions. S can be thought of as the robot
workspace in our study. A robot transits from a state s to the
next s’ by taking an action a in a stochastic environment and
obtains a reward R(s, @). Such transition is governed by a
conditional probability distribution 7(s, a, s')=p(s's, a)
which is termed as transition model (or transition function);
the reward R(s, @), a mapping from a pair of state and action
to a scalar value, which specifies the one-step objective that
the robot receives by taking action a at state s. The final
element y € (0, 1) in M is a discount factor which will be
used in the expression of value function.

We consider the class of deterministic policies I, which
defines a mapping 7 € I1: S — A from a state to an action.
The expected discounted cumulative reward for any policy
7 starting at any state s is expressed as

0

Z V' R(si, m(s:))

t=0

Viis)=E

S0 ZS‘|.)

The state at the next time step, 5,1, draws from distribution
p(sa1ls, m(s,). Let us use £ to denote the computation
epoch, then we can rewrite the above equation recursively as
follows

Vi (s) = R(s, z(s)) + B F()[s] £BY(s), ()
where B” is called Bellman operator,
E*[vF = [p(s'|s,z(s))Vi(s)ds. The computation
epoch k is omltted in the rest of the paper for notation
simplicity. Equation (2) is called Bellman equation. The
function v*(s) is usually called the state value function of the
policy 7. Solving an MDP amounts to finding the optimal
policy z* with the optimal value function which satisfies the
Bellman optimality equation

the and

%

V' (s) = max{R(s,w(s)) + BV (S)s]}. ()

3.2. Approximate policy iteration via value
function representation

Value iteration and policy iteration are the most prevalent
approaches to solving an MDP. It has been shown that the
value iteration and policy iteration can both converge to the
optimal policy in MDPs with discrete states (Bertsekas
2012; Sutton and Barto 2018). Our work will be built
upon policy iteration and here we provide a summary of the
common value function approximation methods used in
policy iteration when dealing with continuous states
(Bertsekas 2011; Gordon 1999; Powell 2016).

Policy iteration requires an initialization of the policy
(can be random). When the number of states in the MDP is
finite, a system of finite number of linear equations can be
established based on the initial policy, where each equation

is exactly the value function (equation (2)). The solution to
this linear system yields state-values for all states of the
initial policy (Puterman 2014). This step is called policy
evaluation. The second step is to improve the current policy
by greedily improving local actions based on the incumbent
values obtained. This step is called policy improvement.
Through iterating these two steps, we can find the optimal
policy and a unique solution to the value function that
satisfies equation (1) for every state.

If, however, the states are continuous or the number of
states is infinite, it is intractable to store and evaluate the
value function at every state. One must resort to approxi-
mate solutions by finding an appropriate representation of
the value function. Suppose that the value function can be
represented by a weighted linear combination of known
functions where only weights are to be determined, then a
natural way to go is leveraging the Bellman-type equation,
that is, equation (2), to compute the weights. Specifically,
given an arbitrary policy, the representation of value
function can be evaluated at a finite number of states,
leading to a linear system of equations whose solutions can
be viewed as weights (Lagoudakis and Parr 2003). This
obtained representation of the value function can be used to
improve the current policy. The remaining procedure is then
similar to the standard policy iteration method. The final
obtained value function representation serves as an ap-
proximated optimal value function for the whole continuous
state space, and the corresponding policy can be obtained
accordingly.

Formally, let the value function approximation under
policy 7 be

m

Vi(s)=v(s;w") = Z A

i=1

! d)i(s)’ (4)

where ¢; € ® £ {¢1, ..., ¢,,}. The elements in the set ® are
called the basis functions in literature (Powell 2016), and
these basis functions are usually parametric functions with a
fixed form. A finite number of supporting states s = {s',
s™}, N> m can be selected. The selection of supporting states
s needs to take into account the characteristics of the un-
derlying value functions. In the scenario of robot motion
planning in complex terrains, it relates to the properties of the
terrain, for example, geometry or texture. The solution to w”
can be calculated by minimizing the squared Bellman error
overs, defined by L(w?) = SN | (v(s’; w*) — B v(s'; w"))™
And w" may have a closed-form solution in terms of the basis
functions, transition probabilities, and rewards (Lagoudakis
and Parr 2003). By policy iteration, the final solution for v(s;
w") can be obtained. Note that v(s) may also be approximated
by any non-parametric nonlinear functions such as neural
networks.

4. Methodology

Our objective is to design a principled kernel-based policy
iteration approach by leveraging kernel methods to solve the

Xu et al.

1061

continuous-state MDP. In contrast to most decision-
theoretic planning frameworks which assume fully
known MDP transition probabilities (Boutilier et al., 1999;
Puterman 2014), we propose a method that eliminates such
a strong premise which oftentimes is extremely difficult to
engineer in practice. To overcome this challenge, first we
apply the second-order Taylor expansion of the kernelized
value function (Section 4.1). The Bellman optimality
equation is then approximated by a partial differential
equation which only relies on the first and second moments
of transition probabilities (Section 4.2). Combining the
kernel representation of value function, this approach ef-
ficiently tackles the continuous or large-scale state space
search with minimum prerequisite knowledge of state
transition model (Sections 4.3 and 4.4).

4.1. Taylored approximate Bellman equation

To design an efficient approach for solving continuous-state
MDP problems, we essentially need to fulfill two re-
quirements: a suitable representation of the value function
and efficient computation of the Bellman optimality
equation.

For the first requirement, we may directly apply the basis
functions to approximate the value function and then solve
the Bellman optimality equation. Yet this approach faces
difficulties of explicitly specifying basis functions: if the set
of basis functions is not rich enough, the approximation
error can be large. A better approach may be a direct ap-
plication of kernel methods to represent the value function
(referred as the direct kernel-based method). We will dis-
cuss this method later. But this representation does not
satisfy the second requirement, i.e., efficient evaluation of
the Bellman optimality equation. This is because a fully
specified transition probability function p(-|-,) is required
for computing the Bellman operator, but it is usually hard to
specify in the real world. In addition, even this transition
function can be obtained, the expectation
E" Wi (s)] = [p(s'|s,w(s))vE(s)ds generally does not have
a closed form solutlon, and computationally expensive
numerical integration is typically entailed.

In contrast to directly solving equation (3) by value
function approximation, we consider an approximation to
the Bellman-type equation at first and then apply value
function approximation. We approximate the Bellman
equation by using only first and second moments of tran-
sition functions. This will allow us to obtain a nice property
that a complete and accurate transition model is not nec-
essary; instead, only the important statistics such as mean
and variance (or covariance) will be sufficient for most real-
world applications. Additionally, we will see that evaluating
the integration over the global state space is not needed.
From this perspective, our approximation can be viewed as
a local version of the original Bellman equation, i.e., it uses
local gradient information to approximate the integral of the
value function over possible next states.

Formally, we assume that the state space is of
d-dimension and a state s may be expressed as

§ = [s1,82, .-, 84] T Suppose that the value function v*(s) for
any given policy # has continuous first and second order
derivatives (this can usually be satisfied with aforemen-
tioned value function designs). We subtract both hand-sides
by v"(s) from equation (2) and then take Taylor expansions
of value function around s up to second order (Braverman
et al., 2020):

—R(s,7(s))
= p(E"(s)] s] =" (s)) = (1 = p)V"(s)

= V/p(S’ISaﬂ(S))(V”(S’) —V(s))ds' = (1 = ypv(s) ©)

=y ((ug)rvv”(s) + %v : a;fvv”(s)> — (1 = yhV*(s),

where 1 and o7 are the first moment (i.e., a d-dimensional
vector) and the second moment (i.e., a d by-d matrix) of
transition functions, respectively, with the following form

(W), = / p(s')5, 7(5)) (5, — 5:) s,

(62)

(O’f)i’j = /p(s’|s,7r(s)) (s) —) (sj' - sj) ds', (6b)

fori,j € {1, ..., d}; the operator V= [0/0s1, ...,a/asd]T
and the notation - in the last equation indicate an inner
product; the operator V - 67V is read as

V.oV = Z

To be concrete, we take a surface-like terrain for example
and use that surface as the decision-theoretic planning
workspace, i.e., s =[x, y]T :[sx,sy]T. We have the ex-
pression for the following operator

7
”as 08 ™

o & o L0
T _ T
VooV = oga T g T e T e

Since equation (5) approximates calculation of equation
(2) in the policy evaluation stage, the solution to equation (5)
thus provides the value function approximation under current
policy 7. Equation (5) also implies that we only need to use
the first (u); and second (7), ; moments instead of com-
puting the expectation of the value function using the original
transition model p(s’|s, 7(s)) to evaluate the Bellman operator
equation (3) required in solving MDPs.

Note that our method can be naturally extended to in-
clude higher moments via higher-order Taylor expansions.
We stop at the second moment because the first two mo-
ments are generally sufficient to describe the major char-
acteristics of the transition function. Also, extending to
higher moments will incur heavy computation which is a
trade-off that we need to take into account.

1062

The International Journal of Robotics Research 43(7)

4.2. Approximate Bellman optimality equation
via diffusion-type PDE

Equation (5) is a diffusion-type partial differential equation
(PDE). It is an approximation to the Bellman equation (8)
through the second-order Taylor expansion. We will need to
solve this PDE to obtain an approximation methodology to
the Bellman optimality equation. Typically if solutions exit
for a PDE, there could be infinite solutions to satisfy the
PDE unless we impose proper boundary conditions (Evans
2010). Therefore, we need to analyze the necessary
boundary conditions to equation (5).

In our problem settings, robots are not allowed to move out
of free-space boundaries. We first observe that the value
function should not have values outside of the feasible
planning region, that is, the state space S, and the value
function should not increase towards the boundary of the
region. Otherwise it will result in actions that guide the robot
outside the free space. A practical boundary condition to
impose can be that the directional derivative of the value
function with respect to the outward unit normal at the
boundary states is zero (see Figure 2 for an illustration). It is not
the only condition that we can impose, but it is a relatively
easier condition to obtain solutions with desired behaviors.
Second, in order to ensure that the robot is able to reach the
goal, we follow the conventional goal-oriented decision-
theoretical planning setup and constrain the value function
at the goal state to the maximum state-value in the state space
S. Consequently, these boundary conditions ensure that the
policy does not control the robot outside of the feasible regions
(safety) and also leads the robot to the goal area.

Formally, let us denote the boundary of entire continuous
planning region by OS and the goal state by s,. Suppose the
value function at s, is v,. Section 4.1 implies that the Bellman
optimality equation equation (3) can be approximated by the
following second-order Hamilton—Jacobi—Bellman (HJIB)
PDE:

0 =m3x{y<(ﬂ;’)TW(s) + %V : a;fvv”(s))+

®
R(s,z(s)) — (1 =y (s)},
with boundary conditions
ofVV'(s)-n =0, ondS (9a)
V(sg) = ve (9b)

where n denotes the unit vector normal to S pointing
outward, and condition (9a) constrains the directional de-
rivative with respect to this normal vector # to be zero. The
solution v* of the above PDE can be interpreted as a diffusion
process with uf and o7 as drift and diffusion coefficients,
respectively. We show a 2D example of this boundary
condition in Figure 2. The normal vectors n at the boundary
are perpendicular to the gradient of the value function Vv'(s),
which constrains the value function from expanding outside
the boundaries of the state space. In addition, the direction of

=)

Vv (s

Vv (s)

=)

Figure 2. Illustration of the boundary condition in equation (9a)
using a 2D example. The blue and green regions indicate the
state space and the goal region, respectively. The gray areas
represent the infeasible space, for example, obstacles, and the
boundaries are shown as black curves. The normal vector n and
the gradient of value function Vv"(s) at three arbitrary boundary
points are indicated by yellow and red arrows, respectively.

each gradient vector points toward the goal, and this allows
the policy to follow the value function gradient which guides
the robot to move in the goal direction.

The condition (9a) is a type of homogeneous Neumann
condition, and condition (9b) can be thought of as a Di-
richlet condition in literature (Evans 2010). This elegantly
approximates the classic Bellman optimality equation by a
convenient PDE representation. While equation (8) is a
nonlinear PDE (due to the maximum operator over all the
policies), our algorithm in the future section will allow to
solve a linear PDE for a fixed policy. In the next section, we
will leverage the kernelized representation of the value
function to avoid the difficulties of directly solving PDE.
The kernel method will help transform the problem to a
linear system of equations with unknown values at the finite
supporting states.

4.3. Kernel Taylor-based approximate policy
evaluation

With aforementioned formulations, another critical research
question is whether the value function can be represented by
some special functions that are able to approximate large
function families in a convenient way. We tackle this
question by using a kernel method to represent the value
function. Thanks to equation (8) which allows us to extend
with kernelized policy evaluation for Taylored value
function approximation.

Specifically, let (-, -) be a generic kernel function
(Hofmann et al., 2008). For a set of selected finite sup-
porting states s = {s', ..., 5™}, let K be the Gram matrix with
[K];,=k(s',s), and k(-, 8) = [k(-,s"), ... k(-,s")]". Given a
policy =, assume the value functions at s are
v = [(s"),...,v*(sV)]". Then, for any state ', the ker-
nelized value function has the following form

+

Xu et al.

1063

Vi(s') = k(s',s) (AL + K) V7, (10)
where A > 0 is a regularization factor. When A = 0, it links to
the kernel ordinary least squares estimation of w" in
equation (4); when 4 > 0, it refers to the ridge-type regu-
larized kernel least squares estimation (Shawe-Taylor et al.,
2004). Furthermore, equation (10) implies that as long as the
values V" are available, the value function for any state can
be immediately obtained. Now our objective is to get V”*
through equation (5) and boundary conditions equation (9a)
and (9D).

Plugging the kernelized value function representation
into equation (5), we end up with the following linear
system:

(11)

where I is an identity matrix, R* is a N x 1 vector with
element [R”], = —R(s,z(s")), and M”" is a matrix whose
elements are:

(M (L +K)™' = (1 -pI)F" =R,

1 -
M7, = y((ﬂg)TvSi 5V af,-VSi>k(s’,s’). (12)

Note that V indicates the derivatives with respect to s°, that
is, Va=1[0/0s), ...,6/6s£,]T. Here, we provide a concrete
derivation of using the Gaussian kernel to our proposed
kernel Taylor-Based approximate method as it is a com-
monly used kernel in practice and often used in the studies
of kernel methods.

Gaussian kernel functions on states s’ and s have the
form k(s ,s) = ¢ xexp((—1/2(s — 5)"Z;'(s' — 5)), where
cis a constant and X, is a covariance matrix. Note that X
is referred to as the lengthscale parameter in our work.
The lengthscale governs the “smoothness” of the
function, and a large lengthscale leads to a smooth
function, whereas a small lengthscale causes a rugged
function. Due to limited space, we only provide formula
below for the first and second derivatives of the
Gaussian kernel functions. These formula are necessary
when Gaussian kernels are employed (e.g., equation
(12)). In fact, we have

Vok(s',s) = =X7'(s' — s)k(s', 5), (13)

and

Ve -0, Vek(s',s) = —tr(asZ;')k(s’,s)

/ T'y-T —1/ / (14)

+(s' =) Z 0,2 (s — 8)k(s,),
where #7(-) denotes the trace of the matrix. By plugging
equations (13) and (14) into equation (12), we can obtain an
expression for the elements in the matrix M”.

The solutions to the system equation (11) yield values of
V™. These values further allow us to obtain the value
function (10) for any state under current policy z. This
completes modeling our kernel Taylor-based approximate
policy evaluation framework.

4.4. Kernel Taylor-based approximate policy
iteration

With the above formulations, our next step is to design an
implementable algorithm that can solve the continuous-state
MDP efficiently. We extend the classic policy iteration mech-
anism which iterates between the policy evaluation step and the
policy improvement step until convergence to find the optimal
policy as well as its corresponding optimal value function.

Algorithm 1 Kernel Taylor-Based Approximate Policy
Iteration

Input: A set of supporting states s = {s',...,sV}; the
kernel function k(-,-); the regularization factor \; the
MDP (S, A, T, R, 7).

Output: The kernelized value function Eq. (10) for every

state and corresponding policy.

. Initialize the action at the supporting states.

1

2: Compute the matrix K + AI and its inverse.

3: repeat

4: // Policy evaluation step

5: Solve for V™ according to Eq. (11) in Section 4.1.

6: // Policy improvement step

7: fori=1,..., N do

8: Update the action at the supporting state s* based
on Eq. (15).

9: end for

0: until actions at the supporting states do not change.

Because our kernelized value function representation depends
on the finite number of supporting states s instead of the whole
state space, we only need to improve the policy on s.
Therefore, the policy improvement step in the (k + 1)-th it-
eration is to improve the current policy at each support state

Ty (s) = argmax{R(s, a)+

achA
()74 3729)0},

where s € s, m; and m; are the current policy and the
updated policy, respectively. Note that 4 and ¢¢ depend on
a through the transition function p(s'|s, a) in equation (6).
Compared with the approximated Bellman optimality
equation (equation (8)), equation (15) drops the term
(1 —y)v™(s). This is because v*(s) does not explicitly
depend on action a. The value function of the updated
policy satisfies v+ (s) >v™(s) (Bertsekas 2012). If the
equality holds, the iteration converges.

The final kernel Taylor-based policy iteration algorithm is
pseudo-coded in Alg. 1. It first initializes the actions at the
finite supporting states and then iterates between policy
evaluation and policy improvement. Since the supporting
states as well as the kernel parameters do not change, the
regularized kernel matrix and its inverse are computed only
once at the beginning of the algorithm. This greatly reduces
the computational burden caused by matrix inversion. Fur-
thermore, due to the finiteness of the supporting states, the
entire algorithm views the policy 7 as a table and only updates
the actions at the supporting states using equation (15).

(15)

1064

The International Journal of Robotics Research 43(7)

The algorithm stops and returns the supporting state values
when the actions are stabilized. We can then use these state-
values to get the final kernel value function that approximates
the optimal solution. The corresponding policy for every
continuous state can then be easily obtained from this kernel
value function (Si et al., 2004).

Intuitively, this proposed framework is efficient and
powerful due to the following reasons: (1) by approximating
the Bellman-type equation using the PDE, we eliminate the
necessity in requiring a full transition function and the dif-
ficulty in computing the expectation over the next-state-
values; (2) rather than tackling the difficulties in solving
the PDE, we use the kernel representation to convert the
problem to a system of linear equations with characterizing
values at the finite discrete supporting states. From this
viewpoint, our proposed method nicely balances the trade-off
between searching in finite states and that in infinite states. In
other words, our approach leverages the kernel methods and
Bellman optimal conditions under practical assumptions.

5. Algorithmic performance evaluation

Before testing the applicability of our proposed method in
real-world environments, we conducted algorithmic eval-
uations in two sets of simulations in order to validate the
efficiency of the proposed framework.

To do so, we eliminate the real-world complexities that are
not the focus of the main method (e.g., perception, partial
observability, and online re-planning). The first evaluation
(Section 5.1) is a goal-oriented planning problem in a simple
environment with obstacle-occupied and obstacle-free spaces.
In the second evaluation (Section 5.2), we demonstrate that our
method can be applied to a more challenging navigation
scenario on Mars surface (Maurette 2003), where the robot
needs to take into account the elevation of the terrain surface
(i.e., “obstacles” become continuous and are implicit).

5.1. Plane navigation

5.1.1. Task setup. Our first test is a 2D plane navigation
problem, where the obstacles and the goal area are repre-
sented in a 10m x 10m environment, as shown in Figure 3.
The state space for this task is a 2-dimensional Euclidean
space, that is, s = [sx,sy]T and s € SSR2. The action space
is a finite set with a number of @ points
As) = {a;(s)|ie{l,...,0}}. Each point
ai(s) = [sx + rcos(27i/Q), s, + rsin(2xi/Q)]" is an action
generated on a circle centered at the current state with a
radius r. In this evaluation, we set the number of actions Q =
12 and the action radius as » = 0.5 m. An action point can be
viewed as the “carrot-dangling” waypoint for the robot to
follow, which is the input to the low-level motion controller.

We use a Gaussian distribution as the transition function.
The mean of Gaussian represents the selected (intended)
next waypoint, while the variance is set to 0.1 m in both x
and y axes, accounting for the error in the low-level

controller when executing the waypoint command. We use a
sparse-reward setting, where when the agent arrives at the
goal and obstacle, it receives +1 and —1, respectively. This
setting is known to be challenging for most approximate
MDP methods like deep RL to solve (Nair et al., 2018a).
Since the reward now depends on the next state, we use
Monte Carlo sampling to estimate the expectation of R(s, a).
The discount factor for the reward is set to y = 0.9. We set the
obstacle areas and the goal as absorbing states, that is, the robot
cannot transit to any other states if they are in these states. To
satisfy the boundary condition mentioned in Section 4.2, we
allow the robot to receive rewards at the goal state, but it cannot
receive any reward if its current state is within an obstacle.

5.1.2. Performance measure. Since the ultimate goal of
planning is to find the optimal policy, our performance
measure is based on the quality of the policy. A policy is
better if it achieves a higher expected cumulative reward
starting from every state. Because it is impossible to
evaluate over an infinite number of states, we numerically
evaluate the quality of a policy using the average return
criterion (Islam et al., 2017). In detail, we first uniformly
sample 10* states to ensure a thorough performance eval-
uation. Then, for each sampled state, we execute the policy
for multiple trials, that is, generating multiple trajectories,
where each trajectory ends when it arrives at a terminal state
(goal or obstacle) or reaches an allowable maximal number of
steps. This procedure gives us an expected performance of the
policy at any state by averaging the discounted sum of rewards
over all the trajectories starting from it. Now, we can calculate
the average return criterion by averaging over the performance
of sampled states. A higher value of the average return implies
that, on average, the policy gives better performance over the
entire state space.

5.1.3. Baseline setup for comparison. The performance of
the proposed method is compared against four baseline
approaches. The first baseline is direct kernel-based policy
iteration (Kuss and Rasmussen 2004). It approximates the
value function using the kernel method with the traditional
Bellman update (equation (2)) that requires the full tran-
sition probability. For a fair comparison, we set the kernel
lengthscale as 1, which is the same as our method.

We also compare with the grid-based policy iteration
which is our second baseline, where the continuous state
space is discretized into grids, and the vanilla policy iter-
ation is used to solve the discretized MDP by iterating over
all the grids and actions.

The third technique, nreural-fitted value function for
policy iteration (N-FVPI), represents a class of value-based
RL methods, where a neural network is used to represent the
value function v*(s) to handle the continuous state space
(Heess et al., 2015). During the policy evaluation step, the
value function’s parameters are optimized to reduce the one-
step squared Bellman residual via gradient descent (Lutter
et al., 2021). Like the previous approaches, the policy is
implicitly derived by selecting an action that maximizes the

Xu et al.

1065

Figure 3. Evaluation with a traditional simplified scenario where obstacles and goal are depicted as red and green blocks, respectively.
We compare the final value function and the final policy obtained from (a) kernel Taylor-based PI, (b) direct kernel-based PI, (c)
N-FVPI, and (d) grid-based PI. A brighter background color represents a higher state value. The policies are the arrows (vector fields),
and each arrow points to some next waypoint. Orange dots denote the states, or the grid centers (in the case of grid-based PI), which are

used to update the value functions.

Bellman equation in equation (3). In the experiment, we use
a shallow two-layer network with 100 hidden units in each
layer and a SiLU activation function (Elfwing et al., 2018).

To ensure a comprehensive comparison, besides the
above-mentioned value-based methods, where the policy is
implicitly derived from the value function, we also evaluate
our method against the state-of-the-art actor-critic method,
that is, proximal policy gradient (PPO) (Schulman et al.,
2017). It was selected as a strong baseline from the actor-
critic family due to its proven track record in training complex
control policies for various challenging robotics platforms,
including legged locomotion (Miki et al., 2022) and high-
speed drone racing (Kaufmann et al., 2023). In the experiment,
the value function and the policy are approximated using
neural networks with the same configuration as N-FVPL
Additionally, PPO generally uses zeroth-order gradients, that
is, REINFORCE-type policy gradient (Sutton and Barto
2018), to optimize the policy parameters. In contrast, the
value-based methods, that is, grid-based, direct kernel-based,
and N-FVPL only compute the value function, and the policy
is derived implicitly via the Bellman optimality equation.

5.1.4. Results. The comparison of the above methods aims
at investigating three important questions:

1. In this sparse-reward navigation problem, how does the
kernelized value function representation compare to
alternative representations such as neural networks or
grid-based methods?

2. Incontrast to our approach, the direct kernel-based method
not only requires the fully known transition function but
also restricts the transition to be a Gaussian distribution.
Can our method with only mean and variance perform
similarly to the direct kernel-based method?

3. How does the performance of our method compare to
the state-of-the-art actor-critic (reinforcement learning)
method, that is, PPO?

The results for all five methods are shown in Figure 4 on
the average return with respect to the number of states used
to update the value and policy functions. The first question

is answered because, among the value-based methods, the
kernel method (our kernel Taylor-based and direct kernel-
based PI) consistently outperforms the other two approx-
imators (neural network and grid based). Moreover, the
second question can be answered by observing that our
method has a performance as good as the direct kernel-
based method which, however, requires the prerequisite full
distribution information of the transition. This indicates that
our method can be applied to broader applications that do
not have complete knowledge of transition functions. In
contrast to grid-based PI, kernel-based algorithms and
N-FVPI can achieve moderate performance even with a
small number of supporting states. It implies that the
continuous representation of the value function is crucial
when supporting states are sparse. However, increasing the
number of states does not improve the performance of the
N-FVPL. Lastly, the actor-critic method, PPO, requires more
samples to achieve performance on par with the value-based
methods, but it exceeds the performance of the N-FVPI after
using 100 samples to update the value and policy networks.
However, due to the complex approximators used (neural
networks), PPO requires more samples to achieve performance
on par with the kernelized value function representation.

In Figure 5, we compare the computational time and the
number of iterations to convergence for all the value-based
methods. The computational time of our method is less than
that of the grid-based method, as revealed in Figure 5(a). We
notice a negligible computational time difference between
our and direct methods. As a parametric method, N-FVPI
has the least computational time and increases only linearly,
but it does not converge as indicated by Figure 5(b).

The function values and the final policies are visualized
in Figure 3. All methods except for the N-FVPI obtain
reasonable approximations of the optimal value function.
Compared to our method, the values generated by the grid-
based method are discrete “color blocks.” Thus, the ob-
tained policy is not smooth.

5.1.5. Impact of hyperparameters. We also examine the
impact the hyperparameters, for example, number of sup-
porting states and lengthscales, on the method’s performance.

1066

The International Journal of Robotics Research 43(7)

To achieve this goal, we place evenly-spaced supporting states
(in a lattice pattern) with different spacing resolution. Besides
the number of states, the kernel lengthscale and the regula-
rization parameter A are the other two hyperparameters
governing the performance of our algorithm. We present the
grid-based hyperparameter search results using four different
configurations of supporting states shown in Figure 6. The
lengthscale and regularization parameters are searched over a
set of values whose range is pre-estimated by the workspace
dimensions and obstacle configurations, {0.5, 1, 1.5, 2, 2.5, 3}.
By entry-wise comparison among the four matrices in
Figure 6, we can observe that increasing the number of states
leads to improving performance in general. However, we can
find that the best performed policy is given by the 10 x
10 supporting states configuration (Figure 6(c)) which is not
the scenario with the best spacing resolution. This indicates
that a larger number of states can also result in a deteriorating
solution, and the performance of the algorithm is a matter of

Avg. return vs. Number of states

0.81
/l\\’/ 4 —t
sl NS — 1
c |
2 0.44 — —] |
o | 11 l
)
2 0.2
§ —— Kernel Taylor-Based PI
< 0.01 Direct Kernel-Based PI
—— N-FVPI
—— Grid-Based PI
—0.2 —— PPO
50 100 150 200

Number of supporting states/grids

Figure 4. The comparison of the average return of the policies
computed by our method (kernel Taylor-based PI) and four other
baselines. The x-axis is the number of supporting states/grids used in
computing the policy. In the case of PPO, it represents the number of
samples used for value and policy updates. The y-axis shows the
average return. The error bars represent the standard deviations.

(a)

—— Kernel Taylor-Based PI
5 Direct Kernel-Based PI
—— N-FVPI

—— Grid-Based PI

Runtime in seconds

50 100 150
Number of supporting states/grids

200

how the supporting states are placed (distributed), instead of
the number (resolution) of state discretization. Furthermore,
we can gain some insights into selecting the hyperparameters
based on the number of supporting states. Low-performing
entries (highlighted with red) occur more often on the left side
of the performance matrix when the number of supporting
states increases. It implies that with more supporting states, the
algorithm requires a stronger regularization (i.e., greater A
described in Section 4.3). On the other hand, high-performing
policies (indicated by yellow) appear more at the bottom of the
performance matrix when a greater number of supporting
states are present, which means that a smaller length scale is
generally required given a larger quantity of supporting states.

5.2. Martian terrain navigation

In this evaluation, we consider the autonomous navigation
task on the surface of Mars with a rover. We obtain the Mars
terrain data from High-Resolution Imaging Science Ex-
periment (HiRISE) (McEwen et al., 2007). Since there is no
explicitly presented “obstacle,” the robot only receives the
reward when it reaches the goal. If the rover attempts to
move on a steep slope, it may be damaged and trapped
within the same state with a probability proportional to the
slope angle. Otherwise, its next state is distributed around
the desired waypoint followed by the current action. This
indicates that the underlying transition function should be
the mixture of these two factors, and it is reasonable to
assume that the means of the two cases are given by the
current state and the next waypoint, respectively. We can
similarly have an estimate of the variances. The transition
function’s mean and variance can then be computed using
the law of total expectation and total variance, respectively.

Due to the complex and unstructured terrestrial features,
evenly-spaced supporting state points may fail to best
characterize the underlying value function. Also, to keep the
computational time at a reasonable amount while main-
taining a good performance, we leverage the importance
sampling technique to sample the supporting states that

(b)

Y

N N
o v

Number of iterations
=
v

un
o

—— Kernel Taylor-Based PI
Direct Kernel-Based PI

—— N-FVPI

—— Grid-Based PI

50 100 150
Number of supporting states/grids

200

Figure 5. Computational time comparisons of the four value-based algorithms with changing number of states. (a) The computational

time per iteration and (b) number of iterations to convergence.

Xu et al.

1067

36 support states

o ©-037 0.41 0.44 0.46 0.45 0.47
Gl -0.45
Zin 0.35 0.40 0.43 0.43 0.45
B~
=
o 0029 0.30 0.37 0.39 0.44 | 030
[i7] N
=
3 i DRYFE 038 0.43 0.42 045
x o -0.15
@ o-0.49 055 055 0.55 0.55 0.57
13 0.00
O n-0.44 0.45 0.45 0.44 0.43 0.43

o

05 1.0 15 20 25 3.0
Regularization parameter
(c)
100 support states

o ©-0.49 0.49 0.49 0.50 0.51 0.52
"™ -0.60
£ 0.44 0.48 0.47 0.51 0.49 051
oy N
2 -0.45
25 . 0.43 0.45 0.49 0.47
TN L
[=
& m_m I 0.44 0.47 0.49 053 | O3
c —~
@ o 025 0.47 0.73 0.71 0.73 [0.15
5 ~
i8]
O -0.69 0.70 0.70 0.72 0.71 0.70 [0.00

o

05 10 15 20 25 3.0
Regularization parameter

—_
o
=

49 support states

o ©-0.40 042 0.43 045 0.46 0.47 -0.60
o m
(v
£ 11043 0.45 0.41 0.45 0.43 0.46 -0.45
o~
c
%2 0.58 0.49 0.46 0.43 0.46 045 | g3q
=
%2055 0.63 0.62 0.56 0.55 0.15
o o 033 0.46 0.57 0.63 0.66
§ ~ 0.00
Y 1~ -0.39 040 0.39 0.43 0.44 0.38

S : -0.15

05 1.0 15 20 25 3.0
Regularization parameter
(d)
121 support states

o ©-0.51 0.50 0.50 0.46 0.47 0.48
= o -0.60
(o]
g i -0.58 0.55 0.54 0.50 0.51 0.52
cv,N
s -0.45
— ©-0.54 0.62 0.59 0.60 0.58 0.60
o N
c
Q ﬂ 0.53 0.62 0.63 0.64 [+0.30
c
< D oo o
5 0.15
1+
o

in -0.60 0.67 0.67 0.68 0.69 0.69
o

05 10 15 20 25 30
Regularization parameter

Figure 6. The performance matrix obtained by the hyperparameter search using (a) 6 x 6, (b) 7 x 7, (c) 10 x 10, and (d) 11 x 11 evenly-
spaced supporting states. Rows and columns represent different Gaussian kernel lengthscale and regularization parameters,
respectively. The numbers in the color map represent the average return of the final policy obtained using the corresponding
hyperparameter combination. The colorbar is shown on the right side of each table.

concentrate around the dangerous regions where there are
steep slopes. This is obtained by first drawing a large
number of states uniformly covering the whole workspace.
For each sampled state, we then assign a weight propor-
tional to its slope angle. Finally, we resample supporting
states based on the weights. To guarantee the goal state to
have a value, we always place one supporting state at the
center of the goal area.

Figure 7(a) and (c) compare the two methods of differing
supporting state selections. The supporting states given by
the importance sampling-based method are dense around
the slopes. These supporting states better characterize the
potentially high-cost and dangerous areas than the evenly-
spaced selection scheme. We selected four starting locations
from which the rover needs to plan paths to reach a goal
location. For each starting location, we conducted multiple
trials following the produced optimal policies. The trajec-
tories generated with the importance sampling states in
Figure 7(d) attempt to approach the goal (red star) with
minimum distances, and at the same time, avoid dangerous
terrains by choosing more leveled/even surfaces. In con-
trast, the trajectories obtained using the evenly-spacing

states in Figure 7(b) approach the goal in a more aggres-
sive manner which can be risky in terms of safety. It in-
dicates that a good selection of supporting states can better
capture the state value function and thus produce finer
solutions. This superior performance can also be reflected in
Figure 8(b). The policy obtained by the uniformly sampled
states shows similar performance to the one generated by
the evenly-spacing states, both of which yield smaller av-
erage return than the importance-sampled case. A top-down
view of the policy is shown in Figure 8(a) where the
background color map denotes the elevation of terrain.

6. Autonomy system design

Previous algorithmic evaluations assume that a well-defined
MDP can be abstracted and constructed from the real-world
problem and focus on algorithmic property/performance
assessments. However, in reality, specifying an MDP for
stochastic motion planning problems requires a known task
region for constructing the state space as well as detailed
information on the environment for transition and reward
functions. These requirements are generally very difficult to

1068

The International Journal of Robotics Research 43(7)

satisfy if we deploy the robots into the real world, especially
in the off-road environment where the task region is hard to
define and no prior map is provided. In such cases, the robot
needs to use its onboard sensors to acquire information and
make decisions online. Specifically, it needs to process the
observations, construct a new MDP within the observed
area, compute the corresponding policy, and execute it. This
process should repeat until the task is completed. In this
paper, we only focus on generating a local policy within the
observable area. Global planning in any unknown envi-
ronment might require information-driven (active) sensing
to achieve a trade-off between the exploration of unknown
space and the exploitation of observed space, which,
however, is not the focus of this work.

Furthermore, we confine the MDP construction process
to only relying on the environments’ geometric information
and develop the navigation system based on it. This ca-
pability is vital if only perception depth information is
available (e.g., with point cloud from any ranging sensors)
through which we can leverage mostly the reconstructed
geometry. As illustrated in Figure 1, the uneven terrains

pose many challenges (e.g., traversals of hills, ridges,
valleys, slopes, etc.) as one of the primary features affecting
the robot’s motion efficiency is geometry.

In this section, we present our autonomy system that
extracts the MDP elements (supporting states, transition
function, and reward function) from depth sensor data and
connects the perception to the action loop. Figure 9 provides
an overview of the system.

6.1. Perception

The perception module is responsible for processing sensor
observation and providing information for planning. We use
LiDAR to acquire geometric information about the envi-
ronment. Based on the point cloud, it generates the robot
state (pose) and a map of the environment in the field of
view. The pose information can be estimated by any existing
LiDAR localization methods (e.g., Bresson et al. (2017)).
For the map representation, we utilize the cost map to
provide occupancy information for identifying obstacle-free
regions for navigation. However, there exist scenarios in

Figure 7. Supporting state distributions and the policies for evenly-spaced selection and importance sampling-based selection. The 3D
surface shows the Mars digital terrain model obtained from HiRISE. Supporting states and policies are shown in black dots and vector
fields. The colored lines represent sampled trajectories, which initiate from four different starting positions indicated by the circles with
the same colors. (a, b) The evenly-spaced supporting states and the corresponding policy and trajectories; (¢, d) the supporting states
generated by importance sampling and the corresponding policy and trajectories.

(@)

80

70

o e - -
o W e - W

RIS
= = e w w RN
= = W xS
-
—'—"*
TS S NN R

0

0 40 60 80

o o A Y v,
PR A | TR

(b)

0.7
=2055

g
=

¥
-

=2060

e
e

—2065

Avg. return
o
s

—2070

o
w

o
¥

| =2075

—2080 0.1

0.0
100 Importance Even Uniform

Figure 8. (a) The top-down view of the Mars terrain surface as well as the policy generated by our method with the importance sampling
selection. The color map indicates the height (in meters) of the terrain. (b) The comparison of average returns among three supporting
state selection methods using the same number of states. Red, green, and blue bars indicate the performance of importance sampling
selection, evenly-spaced selection, and uniform distribution sampling selection, respectively.

Xu et al.

1069

MDP Construction
Perception
Transition, Reward
Constructis
Observation Mapping ey
—_— t
Localization [| Elevation Map | | Temp. Goal Generation
Bclasti
N ’ Frontier-Based | Planner
i . -
i T "| Global Trajectory-Based I Policy Computation based
i i onAlg. 1
1 1
E E State Sampling
TP PRI B 1
|
i Global : | H
Planner i Importance Sampler
: 1 = Control
.......................... ! Trajectory Sampler Poey
L]

Figure 9. An overview of the system for navigation in prior-unknown environments. The red arrows represent the direction of the

information flow. The global planner module in the dashed block

uneven terrains where it might inaccurately model the
navigability of certain regions. For instance, areas with
considerable elevation might be misrepresented as occu-
pied, despite the possible traversability due to a non-steep
gradient of the surface. Thus, we use a 2.5D elevation map
(Fankhauser et al., 2018) to provide a finer depiction of the
terrain shape. Combined with the variance design based on
the slope information described in the previous section, the
robot can reason about navigability beyond mere
occupancy.

6.2. MDP construction

The second part of the system builds an MDP using the
mapping information. In the following, we explain this
construction process for each MDP element.

6.2.1. State and action spaces. The state and action spaces
are pre-defined with the given vehicle type (ground).
Specifically, the state is represented as the robot pose with
position and orientation information (x, y, 8), and the action
consists of linear and angular speeds (v, w). Since our
method deals with the discrete action space, we can tes-
sellate the continuous action into evenly-spaced intervals
(i.e., equi-distanced linear/angular speed levels). The dis-
cretization resolution, as well as the minimum and maxi-
mum values for the speeds, depend on the robot’s capability
and the task’s complexity.

6.2.2. Reward function. When using the cost map, the
reward function consists of two parts
R(s) = (1 — Ly, (s))c(s) + 1ol (s). The first part c(s) is the
obstacle penalty provided by the cost map, I (s) is an
indicator function for checking whether the state belongs to
the goal region s,, and 7, is the goal reward. If only the
elevation map is used, the obstacle penalty is not included,

is optional.

and the robot only receives a positive reward if it arrives
at the goal. Since we focus on planning within the
observable space only, we need to generate a dummy
goal region s, in the space of the field of view. In other
words, it needs to set a temporary goal if the final goal
region is outside of the robot’s current observed area. We
use two heuristic approaches to generate this temporary
goal. The first one is inspired by the frontier-based
concept which generates a temporary goal chosen at
the boundary of the current observable map and with the
least distance towards the final goal (Burgard et al.,
2005; Yamauchi 1997). The second method utilizes the
path generated by a global planner if available (usually
just for high level guidance). The temporary goal can be
determined by “cropping” a path segment from the
global path within the field of view only, where the path
segment starts from the current robot pose and extends to
a pre-defined length along the cropped path, and the final
pose on the extracted path segment serves as the tem-
porary goal. Note that such a global planner is not
mandatory for our method as it can be replaced with any
frontier-based goal selection method.

6.2.3. First two moments of the transition function. We
assume that the robot motion is generated based on 5" = f{s,
a, h) + €, where f{s, a, h) is a deterministic function rep-
resenting the discrete-time motion model related to vehicle
dynamics, for example, a differential drive model; 4(s) is the
slope angle at state s derived from the elevation map; and €
is a noise term independent of the state and action. If the
elevation map is used, the motion model considers the effect
of the elevation on the robot’s motion. Otherwise, we treat
h(s) = 0 (flat surface) for all states in the current state space.
To construct f{s, a, h), we modify the Dubin’s car model to
take into consideration of the terrain slope, X' = (/2 — h(s))
(x +vAzcos 0) + h(s)x,y = (x/2 — h(s)) (v + vAtsin 0) + h(s)
y,and 6’ = 0 + wAt. Here, h(s) € [0, /2] is the slope angle at

1070

The International Journal of Robotics Research 43(7)

state s and At is the time discretization resolution. Intui-
tively, this model penalizes the distance traveled on the
surface with a larger slope angle. Based on this formulation
and equation (6), the first and second moments can be
computed as u(s,a,h) = Ays + El€] and
o(s,a,h) = Ve —|—/4(s,a,h),u(s,a,h)T, where A,s = fis, a,
h) — s is the state shift after applying action a. In this work,
we choose the mean E[e] = 0 and variance proportional to
the slope V[e] = kh(s), where k > 0 is a constant that
modulates the impact of the slope on the model’s uncer-
tainty. Specifically, a larger value of & indicates increased
uncertainty in the robot’s motion on elevated terrains. This
variance formulation allows the planner to be more cautious
about navigating on high-slope terrain surfaces, enabling
the robot to avoid these hazardous areas. The advantage of
our method is obvious from the above modeling perspec-
tive. Since we only need to model the mean and variance of
the noise ¢, it is not necessary to acquire the exact prob-
ability distribution of the noise.

6.2.4. Supporting states. The last part of the construction is
state sampling, which is responsible for distributing the
supporting states within the state space. The positions and
the number of supporting states are critical as they deter-
mine the accuracy of the value function and also compu-
tational time. More supporting states generally provide a
better estimation of the optimal value function but require
more time to compute as shown in Section 5.1. We consider
uniform sampling, importance sampling, and trajectory
sampling strategies in this work. All these sampling
methods require a region to distribute the supporting states.
The first two methods introduced in Section 5.1 and Section
5.2 need prior knowledge of the environment and specifi-
cation of a sampling region, for example, a rectangular
workspace. In greater detail, the uniform sampling tessel-
lates a pre-defined region into equal-sized cells and uses the
cell vertices as the supporting states. The importance
sampler first uniformly samples a large number of states and
then selects them based on some weighting criteria, for
example, the slope of the terrain at a given state point. The
trajectory sampler utilizes the global path generated by a
global planner as a heuristic to define the planning and
sampling region. It extracts a path segment on the global
path starting from the current robot pose and distributes the
state samples around this path segment, whose length can
also be determined by the maximum linear speed of the
robot. It distributes the state samples around the same path
segment extracted from the global trajectory-based goal
generation method. This method is especially useful when
fast online computation is required since it does not need to
search the entire planning region.

6.3. Policy computation and execution

With all the MDP elements ready, we can use Alg. 1 to
compute a policy for the constructed MDP. Then, this policy

is used for generating control actions a = (v,) = z(s). It is
necessary to discuss two motion planning and control
strategies of this system based on the global planner’s ability
to plan an executable path on uneven terrains.

6.3.1. Periodic re-planning. Conventional commonly-used
global path planners (e.g., sampling-based or graph-based
methods) generally do not consider the tracking ability of
the lower-level planner and controller. As a result, when the
low-level controller cannot execute the planned path ac-
curately, the robot may deviate and fail to complete the task.
This issue is particularly prevalent when the robot navigates
on highly unstructured uneven terrains, where behaviors
such as slippage or other unpredictable motion outcomes
can occur frequently. In contrast to the traditional path
planning framework that calculates a path while dis-
regarding the inherent uncertainty when executing the
global path, the proposed approach computes a feedback
policy across a specified region by considering the possible
errors that the low-level controller can easily make due to
possibly fast-varying terrain elevations. In essence, our
proposed method synthesizes the entire process of planning
and control under uncertainty within a single framework.

We use the frontier-based exploration method (Yamauchi
1997) to generate temporary goal points. It is worth men-
tioning that when the planning region is large, a high
computational load can naturally occur, resulting in a
pausing behavior when the robot needs to replan. This can
be mitigated and tuned by reducing the cropped planning
region. Once the policy is computed within the selected
region, it can query the action anywhere in the defined state
space in real-time, as action computation only requires it-
erating over a finite number of actions. Also, re-planning is
typically invoked periodically, initiated either when the
robot reaches a predetermined interim goal or when new
map information necessitates modifying the current policy,
such as when the initially planned policy leads to a collision.
Upon either event, the robot ceases its current policy and
recalculates a new one incorporating this updated infor-
mation. While this approach might cause delays due to re-
planning over a large region, it facilitates effective robotic
operation in situations where the path determined by the
conventional global planner is difficult for the low-level
controller to track.

6.3.2. Real-time planning with a global trajectory. 1f the
global planner can provide a reasonable trajectory, which
incurs only moderate tracking error, this information can
reduce the search space by using the trajectory sampling
strategy to obtain states around the globally planned path.
The region encompassed by these states may be concep-
tually viewed as a tube within which the robot must remain,
similar to the funnels constructed in Majumdar and Tedrake
(2017). Focusing the policy search around the global path
allows MDP construction and policy iteration to be per-
formed in real-time. Subsequently, this affords the im-
plementation of the Model Predictive Control (MPC)

Xu et al.

1071

paradigm for real-time execution. After each policy iteration
computation, the robot executes a singular action from the
feedback policy and initiates a re-planning process.

7. Experiments using a realistic
physics simulator

7.1. Experimental setup

To accomplish the autonomous navigation system described
above, we first integrate the perception module and test the
system’s performance. The robot is no longer provided with
a prior map of the environment, and it can observe the
environment and obtain state information from its onboard
depth sensor.

Our test scenario is designed to assess the navigation
efficiency of the robot within a high-fidelity unity simulation
environment, where the robot is required to navigate without
a prior map. The simulator simulates a ClearPath Warthog
differential drive ground vehicle with a 64-beam LiDAR. Its
task is to navigate to a set of pre-defined waypoints se-
quentially and return to the initial position. The snapshot of
the simulator environment and a bird-eye map view can be
observed in Figure 10. This simulation environment en-
capsulates a range of challenging characteristics typically
present in real-world off-road settings. Among these chal-
lenges are the uneven and textured ground terrain, clusters of
densely packed obstacles, and narrow alleyways, which all
pose substantial complexities for effective navigation. In
addition, our mission definitions require the robot to plan and
navigate areas without clearly distinguishable dirt-roads.
These aspects of the environment necessitate a planning and
motion control method that is precise enough to navigate
constricted passages and robust enough to accommodate
disturbances arising from uneven surfaces.

We set the robot’s minimum and maximum values for
linear and angular speeds as v,,;; = —1 m/s, Vi = 1 mls,
W pmin = — 1.5rad/s (turing right), and @, = 1.5rad/s (turning
left). In this experiment, we test the real-time local planning
capability of the system, where an anytime version of A*
(ATA*) (Likhachev et al., 2005) is employed as the global
planner to provide the desired reference trajectory, and we
sample support states around it, as described in Section 6.2.4.

We compare our method with the nonlinear model
predictive control (NMPC) technique for path optimization.
NMPC is a deterministic local trajectory optimization ap-
proach (see Allgower and Zheng (2012) for an overview),
and it has a track record of documented successes in path
planning over real-world challenging terrains (Gregory
et al., 2016; Howard and Kelly 2007). The NMPC is still
benchmarking for highly agile trajectories in cluttered and
challenging environments (e.g., drone flight at speeds up to
20 m/s (Sun et al., 2022)). The traditional three-layer
planning and control system often adopts this pipeline.
We implemented the NMPC which produces smooth tra-
jectories that respect the robot’s dynamics by optimizing a
cost function penalizing the path deviation from a desired
global trajectory using algorithms from the NLOPT library
(Johnson).

The two approaches were tested under three settings:
10, 5, and 4 waypoints, respectively. Figure 11 shows the
waypoint positions, the constructed occupancy map, and
two sampled trajectories for each setting using our
method. The action space for our method is discretized
evenly into 8 x 8 intervals which are dense enough to
approximate continuous actions. For both methods, we
choose 6m as the length of trajectory sampling, meaning
that the robot plans 2s in the future if it uses the maximum
speed 3 m/s.

7.2. Metrics

Both methods are evaluated with the following four metrics:

® Tracking Error: This metric measures the averaged
distance between the global path and the executed path
in the (x, y) axes. A smaller tracking error indicates the
method can better execute the plan with a smaller de-
viation from the global path and is preferred.

® Average Jerk (Avg. Jerk): This metric indicates the robot’s
average sum of acceleration changes along (x, y) directions
across a mission. Generally, a smaller value reflects a
smoother motion execution of the mission and is preferred.

e Completion Time: The completion time is the total tra-
versal time to arrive at all the designated waypoints. It is
computed over the successful runs only.

Figure 10. The unity simulation environment. (a) The top-down view of the environment, (b) a close view of navigable space in the
simulator, and (c) an example of the narrow alleyway in the environment.

1072

The International Journal of Robotics Research 43(7)

o8
i

Waypotd

E -4 . .
e > .

Figure 11. The mission maps and sampled robot trajectories for (a) ten, (b) five, and (c) four waypoint settings. The blue circles are
the waypoints. For each setting, the robot starts from the initial position, navigates sequentially to the next points, and returns to
the initial position. The blue paths represent the trajectories in two runs using our method. The straight red lines between
waypoints show the mission’s connection (i.e., order of waypoints). The other colored short path segments are related to robot’s
simultaneous localization and mapping (SLAM). In particular, the short red line segments scattered along the traveled path
correspond to the pose graph factors after the successful execution of iterative closest point (ICP) registrations (Grisetti et al.,
2010). Instances of successful loop closures are demonstrated by green lines linking two navigated paths. Lastly, the extended light

green lines in (a) (b) and (c) represent the global plan.

® Success Rate: The success rate indicates the number of
times the robot arrives at all the waypoints out of 10 runs
without collision or getting stuck.

Compared to the averaged cumulative rewards that we
used for evaluating the basic algorithmic performance
(Section 5.1.2), these metrics are more relevant to the
robot navigation task. We record these metrics only
during the execution of the optimized trajectory (or
policy), which excludes the global planner’s influence on
the evaluation.

7.3. Result

The result is shown in Table 1. In general, our method is
more efficient and can complete the task using a shorter
traversal time than NMPC. Additionally, our method
completes all 10 runs for the three waypoint settings, while
NMPC achieves 100% success rate only in the 10 waypoint
setting (i.e., with sufficient waypoint guidance). Since the
NMPC method attempts to follow the global path exactly,
the trajectory optimized by NMPC sometimes oscillates
around and overshoots the global path. This oscillation
causes the vehicle to reduce its speed due to frequent
turning. In contrast, since our method considers the un-
certainty (via the second moment) of the robot’s motion, it
can reason about a region around the global path. As a
result, as long as the robot remains within the area supported
by the sampled states, it does not show oscillation behavior.
The second row (average jerk) of the table can reflect this
comparison, where in the 5 and 4 waypoint scenarios, our
method produces a smaller jerk, resulting in smoother
trajectory execution, while NMPC needs to stop abruptly
when it overshoots far away from the global path. We can
also observe that the global path overshooting problem of
NPMC leads to larger tracking errors in the last two
waypoint settings.

It is also worth pointing out that the robot uses a shorter
time to complete the task in the 4 waypoint mission than in

the 10 waypoint. This can be explained by observing the
trajectories the robot generated in the two missions in
Figure 11. Although the 10 waypoint mission provides
denser waypoints, the robot is restricted to following these
pre-defined points, which are not necessarily the shortest
route. In contrast, the 4 waypoint mission has less restriction
on which trajectory the robot should follow. As a result, the
robot chooses a shortcut to navigate from Waypoint 2 to
Waypoint 3 as shown in Figure 11(c).

8. Real-world demonstrations in indoor
cluttered and outdoor unstructured
environments

To demonstrate the applicability of our system in the real
world, we conducted extensive real-world trials in different
scenarios. The goal is to validate whether the proposed
method can be used to generate effective policies that
navigate a ground vehicle in complex and unstructured
environments. The videos of the robot behaviors are
demonstrated in Extensions 1 and 2.

8.1. Hardware setup

We implement our system on two ground vehicles,
ClearPath Jackal and Husky. Since Jackal is small in di-
mension and has a small wheel traction, it is only used for
indoor experiment. It is equipped with a 16-beam Velodyne
LiDAR for localization and mapping, a quad-core 2.7 GHz
CPU and 16 GB RAM for the onboard computation. Husky
is used for navigating in outdoor environments because it is
larger in size and provides more traction when moving on
rough terrains. Husky is equipped with a 64-beam Ouster
LiDAR for more detailed terrain mapping and a Lord
Microstrain 3DM IMU for more accurate localization
outdoor. It has an eight-core 2.7 GHz Intel 17 CPU and
64 GB RAM for the onboard computation.

Xu et al.

1073

Table 1. Comparison of diffusion MDP local planner (our method) and NMPC in different scenarios. Best-performing metrics are

highlighted in bold. The statistics are averaged over 10 runs.

10 waypoints

5 waypoints 4 waypoints

Diffusion MDP

Tracking error (m) 0.43 +0.09
Avg. jerk (m/s®) 6.73 £ 0.86
Completion time (s) 157.2 £ 1.3
Success rate 10/10
NMPC

Tracking error (m) 0.41 + 0.14
Avg. jerk (m/s®) 5.9 + 0.56
Completion time (s) 161.5 +4.7
Success rate 10/10

0.56 = 0.14 0.51 + 0.11
6.35 = 0.62 6.57 = 0.34
198.6 + 11.2 177.8 £ 9.3
10/10 10/10
0.63 £0.11 0.69 + 0.16
6.77 + 0.41 7.14 £ 0.39
204.6 £ 4.1 2033 £3.5
8/10 4/10

8.2. Indoor cluttered environment

The setup is an indoor 5 m? environment with random boxes
as obstacles, and the task is to navigate the ClearPath Jackal
to a goal location and return to the start position. The first
aim is to validate the basic obstacle-avoidance behavior in a
prior-unknown environment. The second aim is demon-
strating that our system can achieve efficient navigation
behavior without a global planner. We leverage the ele-
vation representation for the MDP construction. Tradi-
tionally, the obstacle penalty in the reward (or cost) function
is used as an indirect method for expressing the potential
consequences of collisions. In this experiment, we also
demonstrate that we can achieve the same obstacle-
avoidance behavior without the obstacle penalty, using
only the two statistical moments of the robot’s motion based
on the elevation map (see Section 6.2). This prepares us for
navigation on uneven terrains demonstrated in the next
section, where obstacle boundaries may be unidentifiable
and the traditional use of the cost map may be inadequate.

Since the planning region is pre-specified (note that it
does not mean the environment map needs to be provided
a-prior), we evenly distribute 6 supporting states in each of
the x, y dimensions, so that the distance between two
neighboring states is 1m in each dimension. However, be-
cause it is difficult to predict what heading angles the robot
may take during the task execution, we need supporting states
to cover one full rotation of the heading angle, that is, [—7,).
Specifically, we place 10 equidistant states in the 6 dimension
so that the distance between two neighboring states along the
6 dimension is /5. The total number of states is 360.

The range of linear and angular speeds are set to v €
[0.5 m/s, 1.5 m/s] and w € [—1.57ad/s, 1.5radls], re-
spectively. The environment, the robot’s motion sequence,
and detailed planning information are shown in Figure 12.
The initial position of the robot is placed in front of the
obstacles, and the goal is between the two obstacles and is
indicated by the green square on the second row of
Figure 12. Initially, due to the occlusion by randomly placed
boxes, the robot can only build a partial elevation map using
the observed points. Then, it uses this initial map to cal-
culate the value function within the state space. The value

function is shown as the upper 2.5D surface in the second
row. To aid the visualization, we only draw the value
function over the position variables at the current robot’s
angle, and the height of the surface represents the state
value. We can observe that the value function correctly
characterizes the environment’s geometry and the task.
Specifically, the goal region has the highest state value.
Since the policy always selects actions that maximize the
state value, executing the policy from this value function
will allow the robot to converge at the goal point. Addi-
tionally, on the value function surface, the narrow ridge
between the two obstacles reflects the navigable space
correctly. As a result, the policy derived from the value
function can navigate the passage safely, as shown in the
first row of Figure 12. As the robot executes its planned
policy, it receives more sensing points and gradually builds
a more detailed elevation map. This progressive refinement
of the elevation map can be seen from the second and fourth
rows. After the robot arrives at the goal, it re-plans and
returns to the initial position, which is shown in the third
row. As the robot’s forward maximum speed (v, = 1 m/s)
is larger than its backward maximum speed (v,,;, = —0.5 m/s),
it strategically reverses and aligns its forward axis with the
initial position to ensure leveraging the maximum linear speed
(the behavior can be observed in the supplementary videos).
This process shows that the computed value function allows
the robot to reason about its under-actuated dynamics through
the two moments. This also reveals that our method exhibits a
speed-adaptive behavior for the most efficient motion.

8.3. Outdoor unstructured environment

We further test our system in two outdoor environments
shown in Figures 13 and 14. These environments contain
unstructured terrains and irregular obstacles that introduce
not only challenges in generating the obstacle-avoidance
behavior but also difficulties in maintaining the robot’s
stable motions while traversing uneven/rough surfaces.

8.3.1. Navigation on uneven terrains. Figure 13 illustrates
the robot’s performance of navigating outdoor

1074

The International Journal of Robotics Research 43(7)

T

Figure 12. The indoor environment where our method is tested for validating its basic obstacle-avoidance and goal arrival behaviors. The
first and third rows show the vehicles’ real-world behaviors at different timesteps, and the second and fourth rows depict the
corresponding visualization results. The task for the robot is to navigate through the gap between boxes (approximately 1.5 m) and arrive
at the green square shown in the second row, and then return back to the initial position. The colored dots are the point cloud generated
from the LiDAR sensing. Upper and lower 2.5 D color maps represent the value function and the elevation map, respectively. The
height of the value function represents the state value. The planned expected trajectories are shown in black curves. The small axes

represent the pose of the robot.

environments with rich elevation variations representing
typical characteristics of uneven/rough terrains.

The first row of Figure 13 displays the navigation process
over a complex terrain containing rocks, gravel, and short
shrubs. To the robot, the rocks and short shrubs are im-
passable obstacles that are often difficult to map, and the
gravel can disturb motions. The second row of the figure
offers a detailed view of the robot’s behavior guided by the
computed value function. In this experiment, we demon-
strate that the robot can effectively detect high-risk zones
characterized by rocks and shrubs, even when relying solely
on the geometric information generated by the elevation
map. These high-risk zones are defined as the terrains with
slopes larger than 45°. We apply importance sampling to
cover these zones in the corresponding state space during
planning. Consequently, a dense cluster of states, indicated
by blue dots, primarily encompasses the high-risk zones.
While the states in high-risk regions provide information
about infeasibility of traversal, others in low-slope regions
offer insights into varying degrees of navigability, de-
pending on the magnitude of the slope. From the figure, we

can see that the computed value function effectively inte-
grates the environmental geometric information, resulting in
a state-value surface with lower values over the high-slope
areas. The low-valued portion of the surface reflects the
increased costs of navigating the corresponding region.
Thus, the associated policy steers the robot away from such
hazardous areas. Additionally, because in this scenario the
value function is computed over a relatively large area, the
disturbance caused by the gravel terrain can be effectively
reduced as long as the robot remains within the area. The
final snapshot shows that the robot can successfully follow
the policy to reach the goal region, represented by the value
function’s maximum, demonstrating the efficacy of our
method in this representative terrain.

The third row of Figure 13 shows another environment
that presents unique challenges with a small hill peaking at
approximately 1m in height, a steep slope in the middle, and
amild slope situated to the left of the robot’s initial position.
The state space is defined over a 10 m” elevation map, and
the states are sampled using importance sampling, where the
slope determines the weights. The robot’s initial position is

Xu et al. 1075

Figure 13. Snapshots of navigation in two elevation-rich environments. The first and second rows show the robot’s planning in an
environment scattered with rocks and the corresponding visualization for computing the solution. In each column, the visualization
showcases the elevation map and the value function, represented as the lower and upper surfaces, respectively. Supporting states are
marked with black dots for low-slope regions and blue dots for high-slope regions. High-slope regions present a greater navigation risk for
the robot and should be avoided. The target destination for the robot is marked by a dark-green square. The red trajectory in the last
column demonstrates the robot’s traversed path. The last two rows demonstrate the planning over an area containing a small hill and the
corresponding visualization. In the visualization, the red trajectory is the robot’s traversed path and the red circle denotes the robot’s

planning goal. The color-coded surface represents the elevation map (for better visualization, the value function surface is not shown in
this scenario).

Figure 14. Snapshots of navigation in a trail using trajectory sampling to sample the states and cost map to represent the environment.
The visualization in the second row shows the cost map as a 2D color map, where a darker color means a higher cost. In the first two
visualizations, thickened/emphasized annotations are overlaid on top of the cost map. Specifically, the red and blue trajectories represent
the expected path by executing the policy and the global path, respectively. The scattered black dots adjacent to the global trajectory
represent a selected subset of sampled states, included specifically for illustrative purposes. Furthermore, the region encapsulating these
states signifies the effective domain of the policy. This is defined as the area within which the value function yields a positive value. The
goal for each time step is shown as a green square. The final goal is the blue circle.

purposefully set to face the steepest part of the terrain, middle of the frontier region, located close to the obstructed
directly confronting the environment’s most challenging area by the steepest and highest terrain segments. Such goal
portion. We use the frontier-based method (Yamauchi 1997) selection poses a challenge for the robot. Although the
to select temporary goals. As shown in Figure 13, the shortest path between the robot’s initial position and the
temporary goal, indicated as the red circle, is placed in the goal is a straight line across the steep terrain, the risk of

1076

The International Journal of Robotics Research 43(7)

flipping or tipping over is also the largest. Despite this
challenge, as seen in the first three columns of Figure 13, our
system effectively guides the robot to perform safe ma-
neuvers to circumvent the steep terrain. This result proves
that our method can effectively guide the robot to navigate
hazardous terrains by penalizing the robot’s movement
distance using the first moment and incorporating the
motion uncertainty via the second moment. The last column
shows that after arriving at the current goal, the vehicle
continues its mission by extending its elevation map, up-
dating the MDP, and computing a new policy based on the
goal selected by the frontier-based method.

8.3.2. Navigation on an unstructured construction site. In
contrast to the elevated environment, Figure 14 shows the
robot navigating a trail surrounded by dense vegetation
around a construction site. Though lacking the challenges of
steep slopes, this environment introduces new complexities.
Particularly, dense vegetation makes up irregular and
cluttered obstacles, and the unpaved road causes significant
motion disturbance due to small rocks.

In order to adapt to this environment, we leverage a
cost map to assign obstacle penalties. Due to the absence
of elevation we employ the trajectory sampling mode
with a global planner (ARA*). The global planner is
designed for obstacle avoidance on flat surfaces. We set
the temporary goal on the global path segment 6m ahead
of the robot. Because the global planner does not account
for the uncertainty introduced by the unpaved trail, fol-
lowing the global path without considering these un-
certainties may lead to large deviations and potential
failures. Our method can naturally handle this problem as
shown in Figure 14. This figure demonstrates the robot’s
behavior at 4 timesteps. The first two columns of the
second row provide visualization of the planning process.
Specifically, the black dots represent the sampled sup-
porting states around the blue global trajectory, closely
followed by the expected robot’s trajectory computed by
our method, shown in red. In contrast to the deterministic
trajectory optimization, which provides only a single
trajectory, our method provides a feedback policy in a
local space, represented as the half-transparent irregular
shape encapsulating the supporting states. This policy
region, defined by the spread of the supporting states and
the second moment of the stochastic motion, enables the
robot to remain within the global-path-guided region
while navigating toward the goal. Thus, the system re-
mains robust even when small rocks or other minor
obstacles perturb the robot away from the globally
planned path. This capability enhances its resilience to
typical disturbances of unpaved paths and is critical for
the safety of our robot.

9. Conclusion and discussion

This paper presents a new decision-making framework
for robot planning and control in complex and

unstructured environments such as the off-road naviga-
tion. We propose a method to solve the continuous-state
MDP by integrating the kernel value function represen-
tation and the Taylor-based approximation to Bellman
optimality equation. Our algorithm alleviates the need for
heavily searching in continuous state space and the need
for precisely modeling the state transition functions. We
have validated the proposed method through thorough
evaluations in both simplified and realistic planning
scenarios. The experiments comparing with other base-
line approaches show that our proposed framework is
powerful and flexible, and the performance statistics
reveal superior efficiency and accuracy of the presented
algorithm.

In addition to the theoretical contribution, our real-
world experiments reveal several challenges of applying
the proposed method in practice. First, the precision of
the optimal solution is contingent upon the specific
locations of the supporting states within the kernel
representation of the value function. Identifying the
most suitable locations for these states is an important
aspect that impacts the accuracy of the solution. One of
our future focused areas will be designing techniques to
determine these optimal state locations such as
leveraging more advanced kernels as well as utilizing
more advanced hyperparameter learning schemes.
Moreover, we aim to extend this investigation into the
scalability of our approach within high-dimensional
spaces. Addressing the challenges associated with
scalability in the expansive spaces stands as an im-
portant objective for our forthcoming research efforts.
Second, we present a system (Section 6) which is mainly
responsible for converting the raw sensor data to an
MDP problem by assuming that feasible/infeasible re-
gions can be distinguished and the features in the en-
vironment (elevation in our experiment) can be obtained
accurately from sensors. Since this MDP is used for
computing a policy, ensuring the MDP matches the real-
world scenario is paramount in the final performance of
the system. However, the map built from the noisy
sensor measurement usually cannot accurately represent
the geometry of the environment, for example, occu-
pancy and elevation. The MDP derived from this in-
accurate map may deviate from the real environment.
Thus, reasoning about these inaccuracies in the planning
method is essential for building a robust navigation
system. Additionally, an accurate physics model for
planning is necessary in complex environments, where
detailed motion control strategies are needed. By
comparing the results of Sections 5.1 and 8, we can
observe that the planning method can generate more
efficient policies if we use a physics model which can
better describe the robot’s motion. In our real-world
experiments, our modeling of the first moment uses
inaccurate models to describe the physical interaction
between the robot and the terrain. Although these
models can be used for planning in the particular

Xu et al.

1077

environments we tested, to generalize to more complex
situations, it is necessary to develop more accurate
physical models that consider not only the elevation but
also terrain textures, which is our future work.

Acknowledgments

The authors would like to express their sincere gratitude to all
anonymous reviewers for their invaluable and constructive feed-
back, which significantly contributed to the improvement and
quality enhancement of this manuscript.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The authors disclosed receipt of the following financial
support for the research, authorship, and/or publication of this
article. This work has been supported by the Army Research
Office and was accomplished under Cooperative Agreement
Numbers WO911INF-20-2-0099 and W91INF-22-2-0018:
Scalable, Adaptive, and Resilient Autonomy (SARA). The
views and conclusions contained in this document are those of
the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Army
Research Office or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
herein. This work was also partially supported by NSF: RI:
Small: Exploiting Symmetries of Decision Theoretic Planning
for Autonomous Vehicles (grant no 2006886), and NSF:
CAREER: Autonomous Live Sketching of Dynamic Envi-
ronments by Exploiting Spatiotemporal Variations (grant no
2047169).

ORCID iDs

Junhong Xu @ https://orcid.org/0000-0001-7127-5093
Jason M Gregory © https://orcid.org/0000-0002-3929-6422

Lantao Liu @ https://orcid.org/0000-0002-6796-6817

References

Agha-Mohammadi A-A, Chakravorty S and Amato NM (2014)
Firm: sampling-based feedback motion-planning under
motion uncertainty and imperfect measurements. The
International Journal of Robotics Research 33(2):
268-304.

Al-Sabban H, Gonzalez LF and Smith RN (2013) Wind-energy
based path planning for unmanned aerial vehicles using
Markov decision processes. In 2013 IEEE International
Conference on Robotics and Automation (ICRA), Karlsruhe,
Germany, 6—10 May 2013.

Allgower F and Zheng A (2012) Nonlinear Model Predictive
Control. Basel: Birkhéuser.

Althoff M, Stursberg O and Buss M (2008) Reachability
analysis of nonlinear systems with uncertain parameters
using conservative linearization. In 2008 47th IEEE
Conference on Decision and Control, Cancun, Mexico,
9-11 December 2008.

Antos A, Szepesvari C and Munos R (2008) Learning near-optimal
policies with bellman-residual minimization based fitted
policy iteration and a single sample path. Machine Learning
71(1): 89-129.

Arulkumaran K, Deisenroth MP, Brundage M, et al. (2017) A4 Brief
Survey of Deep Reinforcement Learning. arXiv preprint ar-
Xiv:1708.05866.

Baek SS, Kwon H, Yoder JA, et al. (2013) Optimal path planning
of a target-following fixed-wing uav using sequential decision
processes. In 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Tokyo, Japan, 03—07 No-
vember 2013.

Bansal S, Chen M, Herbert S, et al. Hamilton-Jacobi reachability: a
brief overview and recent advances. In 2017 IEEE 56th
Annual Conference on Decision and Control (CDC), Mel-
bourne, VIC, Australia, 12-15 December 2017.

Bellman RE (2015) Adaptive Control Processes: A Guided Tour.
Princeton: Princeton university press.

Bemporad A and Morari M (1999) Robust model predictive
control: a survey. Robustness in Identification and Control.
Berlin, Germany: Springer.

Bertsekas DP (2005) Dynamic programming and suboptimal
control: a survey from adp to mpc. European Journal of
Control 11(4-5): 310-334.

Bertsekas DP (2011) Approximate policy iteration: a survey and
some new methods. Journal of Control Theory and Appli-
cations 9(3): 310-335.

Bertsekas D (2012) Dynamic Programming and Optimal Control.
Nashua, NH: Athena scientific.

Bertsekas DP and Tsitsiklis JN (1996) Neuro-Dynamic Pro-
gramming. Nashua, NH: Athena Scientific Belmont.

Boutilier C, Dean T and Hanks S (1999) Decision-theoretic
planning: structural assumptions and computational lever-
age. Journal of Artificial Intelligence Research 11(1-94):
1-94.

Braverman A, Gurvich I and Huang J (2020) On the taylor ex-
pansion of value functions. Operations Research 68(2):
631-654.

Bresson G, Alsayed Z, Yu L, et al. (2017) Simultaneous locali-
zation and mapping: a survey of current trends in autonomous
driving. IEEE Transactions on Intelligent Vehicles 2(3):
194-220.

Burgard W, Moors M, Stachniss C, et al. (2005) Coordinated
multi-robot exploration. /[EEE Transactions on Robotics
21(3): 376-386.

Chen J, Su K and Shen S (2015) Real-time safe trajectory
generation for quadrotor flight in cluttered environments.
In 2015 IEEE International Conference on Robotics and
Biomimetics (ROBIO), Zhuhai, China, 06-09 December
2015.

Das MP, Conover DM, Eum S, et al. (2022) MA3: model-

accuracy aware anytime planning with simulation

https://orcid.org/0000-0001-7127-5093
https://orcid.org/0000-0001-7127-5093
https://orcid.org/0000-0002-3929-6422
https://orcid.org/0000-0002-3929-6422
https://orcid.org/0000-0002-6796-6817
https://orcid.org/0000-0002-6796-6817

1078

The International Journal of Robotics Research 43(7)

verification for navigating complex terrains. Proceedings
of the International Symposium on Combinatorial Search
15(1): 65-73.

Deisenroth MP, Rasmussen CE and Peters J (2009) Gaussian
process dynamic programming. Neurocomputing 72(7-9):
1508-1524.

Deits R and Tedrake R (2015) Efficient mixed-integer planning for
uavs in cluttered environments. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), Seattle,
WA, USA, 26-30 May 2015.

Elfwing S, Uchibe E and Doya K (2018) Sigmoid-weighted
linear units for neural network function approximation in

The Official
Journal of the International Neural Network Society
107(3—11): 3-11.

Engel Y, Mannor S and Meir R (2003) Bayes meets bellman: the
Gaussian process approach to temporal difference learn-

reinforcement learning. Neural Networks :

ing. Proceedings of the 20th International Conference on
Machine Learning, Washington, DC, USA, 21-24 August
2003.

Evans LC (2010) Partial differential equations. Graduate Series in
Mathematics. 2nd edition. Providence, RI: American Math-
ematical Society.

Fankhauser P, Bloesch M and Hutter M (2018) Probabilistic
terrain mapping for mobile robots with uncertain local-
ization. I[EEE Robotics and Automation Letters 3(4):
3019-3026.

FuY, Xiang Y and Zhang Y (2015) Sense and collision avoidance
of unmanned aerial vehicles using markov decision process
and flatness approach. In 2015 IEEE International Conference
on Information and Automation, Lijiang, China, 08—10 Au-
gust 2015.

Gammell JD and Strub MP (2021) Asymptotically optimal
sampling-based motion planning methods. Annual Review
of Control, Robotics, and Autonomous Systems 4: 295-318.

Gao F and Shen S (2016) Online quadrotor trajectory generation
and autonomous navigation on point clouds. In 2016 IEEE
International Symposium on Safety, Security, and Rescue
Robotics (SSRR), Lausanne, Switzerland, 23-27 October
2016.

Gao F, Wu W, Lin Y, et al. (2018) Online safe trajectory generation
for quadrotors using fast marching method and bernstein
basis polynomial. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), Brisbane, QLD, Australia,
21-25 May 2018.

Gao F, Wu W, Gao W, et al. (2019) Flying on point clouds: online
trajectory generation and autonomous navigation for quad-
rotors in cluttered environments. Journal of Field Robotics
36(4): 710-733.

Gordon G (1999) Approximate Solutions to Markov Decision
Processes. Pittsburgh, PA: Carnegie-Mellon University
School of Computer Science. Technical report.

Gorodetsky AA, Karaman S and Marzouk YM (2015) Efficient high-
dimensional stochastic optimal motion control using tensor-train
decomposition. https://ilp.mit.edu/node/42974

Gregory J, Fink J, Stump E, et al. (2016) Application of multi-
robot systems to disaster-relief scenarios with limited

communication. Field and Service Robotics. Berlin, Ger-
many: Springer, 639-653.

Grisetti G, Kiimmerle R, Stachniss C, et al. (2010) A tutorial on
graph-based slam. IEEE Intelligent Transportation Systems
Magazine 2(4): 31-43.

Heess N, Wayne G, Silver D, et al. (2015) Learning continuous
control policies by stochastic value gradients. Advances in
Neural Information Processing Systems. Cambridge, MA:
MIT Press, 2944-2952.

Hofmann T, Scholkopf B and AlexanderSmola J (2008) Kernel
Methods in Machine Learning. Cambridge, MA: The Annals
of Statistics, 1171-1220.

Howard TM and Kelly A (2007) Optimal rough terrain trajectory
generation for wheeled mobile robots. The International
Journal of Robotics Research 26(2): 141-166.

Huynh A, Karaman S and Frazzoli E (2016) An incremental
sampling-based algorithm for stochastic optimal control.
The International Journal of Robotics Research 35(4):
305-333.

Islam R, Henderson P, Gomrokchi M, et al. (2017) Repro-
ducibility of Benchmarked Deep Reinforcement Learning
Tasks for Continuous Control. arXiv preprint arXiv:
1708.04133.

Johnson SG The NLopt nonlinear-optimization package. https://
ab-initio.mit.edu/nlopt

Kalman RE (1960) Contributions to the theory of optimal control.
Bol. soc. mat. mexicana 5(2): 102—-119.

Kappen H, Gémez V and Opper M (2012) Optimal control as a
graphical model inference problem. Machine Learning 87(2):
159-182.

Karaman S and Frazzoli E (2011) Sampling-based algorithms for
optimal motion planning. The International Journal of Ro-
botics Research 30(7): 846-894.

Kaufmann E, Leonard B, Loquercio A, et al. (2023) Champion-
Level Drone Racing Using Deep Reinforcement Learning.
London, UK: Nature Publishing Group UK.

Kober J, Bagnell JA and Peters J (2013) Reinforcement learning in
robotics: a survey. The International Journal of Robotics
Research 32(11): 1238-1274.

Kuss M and Rasmussen CE (2004) Gaussian processes in
reinforcement learning. Advances in Neural Informa-
tion Processing Systems. Cambridge, MA: MIT Press,
751-758.

Lagoudakis MG and Parr R (2003) Least-squares policy iter-
ation. Journal of Machine Learning Research 4(Dec):
1107-1149.

Langson W, Chryssochoos I, Rakovi¢ SV, et al. (2004) Robust
model predictive control using tubes. Automatica 40(1):
125-133.

LaValle SM (2006) Planning Algorithms. Cambridge, MA:
Cambridge University Press.

Likhachev M, Ferguson DI, J Gordon G, et al. (2005) Anytime
dynamic a*: an anytime, replanning algorithm. /CAPS 5:
262-271.

Lillicrap TP, Hunt JJ, Alexander P, et al. (2015) Continuous
Control With Deep Reinforcement Learning. arXiv preprint
arXiv:1509.02971.

https://ilp.mit.edu/node/42974
https://ab-initio.mit.edu/nlopt
https://ab-initio.mit.edu/nlopt

Xu et al.

1079

Liu L and Sukhatme S (2018) A solution to time-varying Markov
decision processes. I[EEE Robotics and Automation Letters
3(3): 1631-1638.

Liu S, Watterson M, Mohta K, et al. (2017) Planning dynamically
feasible trajectories for quadrotors using safe flight corridors
in 3-d complex environments. /[EEE Robotics and Automa-
tion Letters 2(3): 1688—1695.

Lutter M, Mannor S, Peters J, et al. (2021) Value Iteration in
Continuous Actions, States and Time. arXiv preprint arXiv:
2105.04682.

Majumdar A and Tedrake R (2013) Robust online motion
planning with regions of finite time invariance. A/go-
rithmic Foundations of Robotics X. Berlin, Germany:
Springer, 543-558.

Majumdar A and Tedrake R (2017) Funnel libraries for real-time
robust feedback motion planning. The International Journal
of Robotics Research 36(8): 947-982.

Makoviychuk V, Wawrzyniak L, Guo Y, et al. (2021) Isaac Gym:
High Performance Gpu-Based Physics Simulation for Robot
Learning. arXiv preprint arXiv:2108.10470.

Martin J, Wang J and Englot B (2018) Sparse Gaussian Process
Temporal Difference Learning for Marine Robot Navigation.
arXiv preprint arXiv:1810.01217.

Maurette M (2003) Mars rover autonomous navigation. Autono-
mous Robots 14(2-3): 199-208.

McEwen A, Eliason EM, Bergstrom JW, et al. (2007) Mars re-
connaissance orbiter’s high resolution imaging science ex-
periment (hirise). Journal of Geophysical Research: Planets
112(ES).

Mellinger D and Kumar V (2011) Minimum snap trajectory
generation and control for quadrotors. In 2011 IEEE Inter-
national Conference on Robotics and Automation, Shanghai,
China, 09-13 May 2011.

Miki T, Lee J, Hwangbo J, et al. (2022) Learning robust perceptive
locomotion for quadrupedal robots in the wild. Science Ro-
botics 7(62): eabk2822.

Munos R and Moore A (2002) Variable resolution discretization
in optimal control. Machine Learning 49(2-3): 291-323.

Munos R and Szepesvari C (2008) Finite-time bounds for fitted
value iteration. Journal of Machine Learning Research
9(May): 815-857.

Nair A, McGrew B, Andrychowicz M, et al. (2018a) Over-
coming exploration in reinforcement learning with dem-
onstrations. 2018 IEEE International Conference on
Robotics and Automation (ICRA), Brisbane, Australia,
21-25 May 2018.

Nair V, Vitchyr P, Dalal M, et al. (2018b) Visual reinforcement
learning with imagined goals. Advances in Neural Infor-
mation Processing Systems 31.

Oleynikova H, Burri M, Taylor Z, et al. (2016) Continuous-time
trajectory optimization for online uav replanning. In
2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Daejeon, Korea, 09-14
October 2016.

Otte M, Silva W and Frew E (2016) Any-time path-planning: time-
varying wind fieldt moving obstacles. In 2016 IEEE

International Conference on Robotics and Automation
(ICRA), Stockholm, Sweden, 16-21 May 2016.

Pereira AA, Binney J, Hollinger GA, et al. (2013) Risk-aware
path planning for autonomous underwater vehicles using
predictive ocean models. Journal of Field Robotics 30(5):
741-762.

Powell WB (2016) Perspectives of approximate dynamic program-
ming. Annals of Operations Research 241(1-2): 319-356.
Puterman ML (2014) Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Hoboken, NJ: John Wiley & Sons.
Rawlings JB, Mayne DQ and Diehl M (2017) Model Predictive
Control: Theory, Computation, and Design. Madison, WI:

Nob Hill Publishing Madison.

Richter C, Adam B and Roy N (2016) Polynomial trajectory
planning for aggressive quadrotor flight in dense indoor
environments. Robotics Research. Berlin, Germany:
Springer, 649-666.

Schulman J, Filip W, Dhariwal P, et al. (2017) Proximal
Policy Optimization Algorithms. arXiv preprint arXiv:
1707.06347.

Shawe-Taylor J and Cristianini N (2004) Kernel Methods for Pattern
Analysis. Cambridge, MA: Cambridge University Press.

Si J, Barto AG, Powell WB, et al. (2004) Handbook of Learning
and Approximate Dynamic Programming. Hoboken, NI:
John Wiley & Sons.

Sun S, Romero A, Foehn P, et al. (2022) A comparative study of
nonlinear mpc and differential-flatness-based control for
quadrotor agile flight. IEEE Transactions on Robotics 38(6):
3357-3373.

Sutton RS and Barto AG (2018) Reinforcement Learning: An
Introduction. Cambridge, MA: MIT press.

Taylor G and Parr R (2009) Kernelized value function approxi-
mation for reinforcement learning. Proceedings of the 26th
Annual International Conference on Machine Learning,
Montreal, Canada, 14 June 2009.

Tedrake R, Manchester IR, Tobenkin M, et al. (2010) Lqr-trees:
feedback motion planning via sums-of-squares verification.
The International Journal of Robotics Research 29(8):
1038-1052.

Theodorou E, Jonas B and Schaal S (2010) A generalized path
integral control approach to reinforcement learning. Journal
of Machine Learning Research 11: 3137-3181.

Thrun S, Burgard W and Fox D (2000) Probabilistic robotics.
Cambridge, MA: MIT press Cambridge.

Van Den Berg J, Abbeel P and Goldberg K (2011) Lqg-mp: op-
timized path planning for robots with motion uncertainty and
imperfect state information. The International Journal of
Robotics Research 30(7): 895-913.

Wang J, Triest S, Wang W, et al. (2021) Rough terrain navigation
using divergence constrained model-based reinforcement
learning. 5th Annual Conference on Robot Learning, London,
UK, 8-11 November 2021.

Webb DJ and van den Berg J (2012) Kinodynamic Rrt*: Optimal
Motion Planning for Systems With Linear Differential Con-
straints. arXiv preprint arXiv:1205.5088.

Williams G, Nolan W, Goldfain B, et al. (2017) Information
theoretic mpc for model-based reinforcement learning.

1080

The International Journal of Robotics Research 43(7)

In 2017 IEEE International Conference on Robotics and
Automation (ICRA), Singapore, 29 May 2017.

Williams G, Goldfain B, Paul D, et al. (2018) Robust sampling
based model predictive control with sparse objective infor-
mation. Robotics Science and Systems. Pittsburgh, PA:
Carnegie Mellon University.

Xu X, Hu D and Lu X (2007) Kernel-based least squares policy
iteration for reinforcement learning. /EEE Transactions on
Neural Networks 18(4): 973-992.

XuJ, Yin K and Liu L (2019) Reachable space characterization of
Markov decision processes with time variability. Proceedings
of Robotics: Science and Systems. Germany: Freiburgim-
Breisgau. DOI: 10.15607/RSS.2019.XV.069.

Xu J, Yin K and Liu L (2020) Kernel taylor-based value function
approximation for continuous-state Markov decision pro-
cesses. Proceedings of Robotics: Science and Systems.
Corvalis, Oregon, USA: Carnegie Mellon University. DOI:
10.15607/rs5.2020.xvi.050.

Yamauchi B (1997) A frontier-based approach for autonomous ex-
ploration. Proceedings 1997 IEEE International Symposium on
Computational Intelligence in Robotics and Automation CIR-
A’97."Towards New Computational Principles for Robotics and
Automation’, Monterey, CA, USA, 10-11 July 1997.

Zhou B, Gao F, Wang L, et al. (2019) Robust and efficient
quadrotor trajectory generation for fast autonomous
flight. I[EEE Robotics and Automation Letters 4(4):
3529-3536.

Zhou B, Gao F, Pan J, et al. (2020) Robust real-time uav re-
planning using guided gradient-based optimization and
topological paths. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), Paris, France, 31 May
2020.

Appendix

Table 2. A index to multimedia extensions.

Media

Extension type Description

1 Video Indoor experiment video

2 Video Outdoor experiment video showing the
vehicle can traverse various types of
terrains

3 Video Simulation experiment video comparing

our method and NMPC

https://doi.org/10.15607/RSS.2019.XV.069
https://doi.org/10.15607/rss.2020.xvi.050

	Kernel
	1. Introduction
	2. Related work
	2.1. Value
	2.2. Deterministic and stochastic planning in robotics

	3. Preliminary background
	3.1. Markov decision processes
	3.2. Approximate policy iteration via value function representation

	4. Methodology
	4.1. Taylored approximate Bellman equation
	4.2. Approximate Bellman optimality equation via diffusion-type PDE
	4.3. Kernel Taylor
	4.4. Kernel Taylor

	5. Algorithmic performance evaluation
	5.1. Plane navigation
	5.1.1. Task setup
	5.1.2. Performance measure
	5.1.3. Baseline setup for comparison
	5.1.4. Results
	5.1.5. Impact of hyperparameters

	5.2. Martian terrain navigation

	6. Autonomy system design
	6.1. Perception
	6.2. MDP construction
	6.2.1. State and action spaces
	6.2.2. Reward function
	6.2.3. First two moments of the transition function
	6.2.4. Supporting states

	6.3. Policy computation and execution
	6.3.1. Periodic re
	6.3.2. Real

	7. Experiments using a realistic physics simulator
	7.1. Experimental setup
	7.2. Metrics
	7.3. Result

	8. Real
	8.1. Hardware setup
	8.2. Indoor cluttered environment
	8.3. Outdoor unstructured environment
	8.3.1. Navigation on uneven terrains
	8.3.2. Navigation on an unstructured construction site

	9. Conclusion and discussion
	Acknowledgments
	Declaration of conflicting interests
	Funding
	ORCID iDs
	References
	Appendix

