
Zenoh: Unifying Communication, Storage and
Computation from the Cloud to the Microcontroller

Angelo Corsaro, PhD, Luca Cominardi, PhD, Olivier Hecart, Gabriele Baldoni, Julien Enoch
Pierre Avital, PhD, Julien Loudet, PhD, Carlos Guimares, PhD, Michael Ilyin, Dmitrii Bannov

ZettaScale Technology, France

{name.surname}@zettascale.tech

Abstract—An increasing number of systems span from the
data-center down to the micro-controller and need to smoothly
operate across this continuum composed by extremely heteroge-
neous network technologies and computing platforms. Building
these systems is quite challenging due to limitations of existing
technological stacks. This paper introduces Zenoh a Pub/Sub-
/Query protocol that unifies data at rest, data in motion and
computations. Zenoh has been designed ground-up to address
the needs of the cloud to micro-controller continuum. It has
a minimal wire overhead of 5 bytes, it runs and perform on
constrained as well as on high end networks and hardware.

I. INTRODUCTION

An increasing number of systems span from the data-center

down to the microcontroller and need to smoothly operate

across this continuum composed by extremely hetherogeneous

network tehcnologies and computing platforms. Building these

systems today is quite challenging due to limitations of the

existing technological stacks that are explained below.

A. Connectivity Islands

Existing protocols were designed to work on a very specific

use case and in a way address a “connectivity island.” As an

example, the Data Distribution Service (DDS) [DDS(2017)]

was designed to provide a pub/sub protocol that works best

for applications running on resourceful hardware connected

by multicast-enabled (UDP/IP) wired Local Area Network

(LAN). Another assumption in DDS’ design is that peer-to-

peer communication is quintessential and most of the applica-

tions consume data from every other application.

At the opposite side of the spectrum we have MQTT

[OASIS(2014)], which was designed to support pub/sub via

a client to broker architecture over TCP/IP networks. What

is interesting is that both DDS and MQTT provide pub/sub.

Yet, their implementations force onto the user very specific

communication topologies that are completely orthogonal to

the concept of pub/sub. This introduces architectural inflexibil-

ity and scalability issues. As an example, DDS is notoriously

hard to work with and scale on a Wide Area Network (WAN)

as a consequence of its (flat) peer-to-peer only model and its

reliance on multicast IP. MQTT, on the other hand, makes

communicating across a WAN easy, as far as one can accept

to have a hub-and-spoke architecture and a topology not ideal

for several edge applications.

But things are even worse. While Message Queueing

Telemetry Transport (MQTT) is often referred-to as

a lightweight protocol, it relies on TCP/IP and this

is not always available nor desirable for constrained

hardware and constrained networks. Thus, other

protocols are often used to deal with constrained

hardware, such as Constrained Application Protocol

(CoAP) [Shelby et al.(2014)Shelby, Hartke, and Bormann].

At this point, the legitimate question to ask is: how can

we deal with systems that include constrained hardware and

networks, require high-performance peer-to-peer on the edge,

and need to efficiently scale over the Internet?

Thus far, the solution has been to use different protocols on

different segments of the system and integrate them together

hoping to have some meaningful end-to-end semantics. This

is tedious, error-prone and inefficient. A consequence of the

inability of established protocols to deal with the cloud-to-

device continuum – they weren’t simply designed for it.

B. Data in Motion and Data at Rest

Pub/Sub protocols have emerged as the technology of choice

to deal with data in motion, while databases as the technology

of choice to deal with data at rest. These two technology

ecosystems are intimately related. Data in movement needs, at

some point, to be stored, thus becoming at rest, and eventually

retrieved. Yet, from a programmer perspective there is no

unified API to deal with both of them. Additionally, while

pub/sub features location transparency, databases are location

centric. In other words, when expressing a subscription in a

pub/sub system one doesn’t need to know the location of the

publisher(s), yet, when submitting a query it is required to

know the location of the database. As a consequence, either

one has to keep all the data in a central location – like the

solutions provided by cloud storage – or has to deal with

the complexity of tracking data’s location. This is a major

challenge for edge applications. As for these applications it is

key to have data stored in a distributed manner, to avoid the

cost, including energetic cost, of shipping it to the cloud and

to reduce the latency to retrieve it.

C. Computations

While distributed applications can be modeled as data flows,

with computations being triggered only by data, it is rare that

a distributed application is entirely based on this paradigm.

Often it is convenient to have services and be able to trigger,

and invoke their execution. This in turn requires reliance on

422

2023 26th Euromicro Conference on Digital System Design (DSD)

2771-2508/23/$31.00 ©2023 IEEE
DOI 10.1109/DSD60849.2023.00065

20
23

 2
6t

h 
Eu

ro
m

ic
ro

 C
on

fe
re

nc
e 

on
 D

ig
ita

l S
ys

te
m

 D
es

ig
n 

(D
SD

) |
 9

79
-8

-3
50

3-
44

19
-6

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

DS
D6

08
49

.2
02

3.
00

06
5

Authorized licensed use limited to: University of Technology Sydney. Downloaded on August 08,2025 at 05:30:00 UTC from IEEE Xplore.  Restrictions apply. 



yet another technology ecosystem that supports request/reply.

Which means that in turn our developer needs to learn yet

another set of abstractions and APIs. Additionally, existing

request/reply frameworks are host-centric, making it hard to

deal with load-balancing, and fault-tolerance.

Zenoh [Corsaro(2018)] was born from the ambition to

address these problems in a structured manner. We did a

systematic review of all the available protocols, including

emerging Named Data Networking (NDN) [Zhang(2014)],

capitalized on the 20+ years of experience of our team

in working in distributed systems, ranging from embedded

systems to Pan-European Air Traffic Control and management.

After a few years of R&D, our team identified the minimal set

of orthogonal primitives that would allow us to deal with data

in motion, data at rest and computations – from the data-center

to the micro-controller. The result of this effort was Zenoh.

The reminder of this paper is organised as follows, Sec-

tion II introduces the Zenoh protocol and explains its key

features. Section III provides a compartive analysis of Zenoh’s

wire efficiency and performance against MQTT and DDS.

Finally Section IV discusses some of the innovations we are

currently working along with conluding remarks.

II. ZENOH

Zenoh is a Pub/Sub/Query protocol that provides a set of

unified abstractions to deal with data in motion, data at rest

and computations at Internet Scale. Zenoh runs efficiently

on server-grade hardware and networks as well as on micro-

controller and constrained networks. Finally, Zenoh supports

peer-to-peer, routed and brokered communication, thus allow-

ing for an optimal communication model at each stage of the

system. In the reminder of this section we will introduce the

key Zenoh’s concepts.

A. Positioning the Protocol

As we are talking about protocols, the first thing we should

do is to position it with respect to the ISO/OSI model. Figure 1

shows that Zenoh can run above a Data Link, the Network or

the Transport Layer. Which as a consequence, indicates that

the minimal requirement for Zenoh is to have available a best

effort data-link. As of today, Zenoh supports Serial Links,

Bluetooth, LORA, Unix Sockets, TCP/IP, UDP/IP, QUIC,

WebSockets, CANbus, and OpenThreadX.

The reason for having a protocol that can run over the Data

Link is that in embedded systems the IP protocol stack is not

always available or not necessarily desirable for wire-overhead

reasons.

B. Protocol Abstractions

1) Resources, Key Expression and Selectors: Zenoh op-

erates over resources. A resource is a (key, value) tuple,

where the key is an array of arrays of characters. When

representing keys we usually use the “/” as a separator. Thus,

home/kitchen/sensor/C2O2 is a Zenoh key.

A set of keys can be expressed by means of a key selector,

which may include ∗ or ∗∗ which expand respectively to an

Figure 1. Zenoh protocol stack positioning.

arbitrary array of characters not including the separator, and an

array of arrays of characters. For instance home/kitchen/sensor/*

would represent the set of keys including all the sensors in

my kitchen, while home/*/sensor/C2O2 would represent the set

of keys representing all the C2O2 sensors in my house.

Zenoh allows to select a set of resources by using

a selector. The syntax supported Zenoh’s the selector is

keyexpr?arg1=val1&arg2=value – where keyexpr is a key ex-

pression as defined above. Some args, such as those

for indicating filters, projections and time intervals are

built-in, application-specific semantics can be added by

defining additional arguments. As an example the selec-

tor home/*/sensor/temperature?_filter="temp>25"&_project="hum",

among all the temperature sensor in my house it would select

those whose value is greater than 25 and project their humidity.

2) Publisher, Subscriber and Queryable: The Zenoh proto-

col defines three different kinds of network entities, publisher,

subscribers and queryables. A publisher should be thought

as the source for resources matching key expression. As

an example, a publisher could be defined for a key, such

as home/kitchen/sensor/C2O2, or for a set of keys, such as,

home/kitchen/sensor/* or home/kitchen/**.

Symmetrically, a subscriber should be thought as a

sink for resources matching key expression. As an ex-

ample, a subscriber could be defined for a key, such

as home/kitchen/sensor/C2O2, or for a set of keys, such as,

home/**/sensor/*.

A queryable should be through of as a well for resources

whose key match a key expression. As such a queryable for

home/kitchen/** essentially promises that if queried for keys

that match this key expression it will have something to say.

Finally, it is worth mentioning that at a protocol level a

the declaration of publisher is optional and is just seen as an

optimization for recurring publications over a set of keys.

3) Primitives: Zenoh has a very constrained number of

orthogonal primitives, these are:

• Declarations. These primitives, namely, declare_resource,

declare_publisher, declare_subscriber, and declare_queryable

allow to declare a resource, a publisher a subscriber and

a queryable respectively. A declaration is either used to

optimize certain aspects of the protocol, such as auto-

matically mapping keys to small integers, or to inform

423

Authorized licensed use limited to: University of Technology Sydney. Downloaded on August 08,2025 at 05:30:00 UTC from IEEE Xplore.  Restrictions apply. 



import zenoh

# Opens a zenoh session

z = zenoh.open()

key = 'demo/sensor/temp'

# Zenoh supports natively various data types

session.put(key, 25)

Figure 2. Producing data with Zenoh

the rest of the Zenoh network that a specific endpoint

is available. That said, differently from protocols, such

as DDS, in which the dynamic discovery information

provides extremely precise information on who and what

is available on the system, inducing as a consequence se-

vere scalability problems, zenoh uses sets and set-theory

operation to generalize the information distributed across

the network. As such, and as independently measured

in several instances [OSR(2022)], it is not hard for a

Zenoh system to have a fraction of the discovery traffic

generated by an equivalent DDS system.

• Producing Data. The put operation is used to produce a

(key, value). This operation provides options that allow

to specify the congestion control applied to it, the asso-

ciated priority and a few other non-functional properties.

• Deleting Data. Zenoh provides a delete operation that

makes it possible to indicate the desire that a resource

shall be deleted.

• Query. Zenoh provides a get operation that allows to

issue a query. This query will be served by a set of

queryable that cover, in a set-theoretical sense, the key

expression portion of the query. Additionally, among all

the set of sets that cover the query, Zenoh will select

the one that is closest in routing terms. Zenoh provides

options to control if only one of such set will be triggered

or if all the matching queryable will. It also allows to

control wether a partial cover is acceptable or not. The

get operation also allows to control how data will be

consolidated on the way back, and if consolidation is

required at all. Finally a query can have a body attached.

C. Zenoh’s Code Example

Figure 2, 3 and 4 show how Zenoh’s resources can be

published, subscribed and queries respectively. These code

examples show the simplicity and orthogonality of the API. It

is also worth noticing that in Zenoh, as previously mentioned,

a publisher is not required to publish data. On the other hand

it can be used as an optimisation when producing the same

resource, or set of resources recurrently.

D. Universality of Zenoh’s Primitives

In distributed systems usually we need to deal with (1) data

in motion, which is often addressed by pub/sub technologies,

import zenoh

# Opens a zenoh session

z = zenoh.open()

def listener(sample: Sample):

key = sample.key_expr

value = sample.payload.decode()

print(f">> Received: ('{key}', '{value}')")

# declare a subscriber

sub = session.declare_subscriber(key, listener)

Figure 3. Declaring a Zenoh subscpription.

import zenoh

# Opens a zenoh session

z = zenoh.open()

key_expr = 'example/sensor/*'

# issue a query

replies = session.get(key_expr, zenoh.Queue())

for reply in replies.receiver:

try:

print(">> Received ('{}': '{}')"

.format(reply.ok.key_expr,

reply.ok.payload.decode()))

except:

print(">> Received (ERROR: '{}')"

.format(reply.err.payload.decode("utf-8")))

Figure 4. Issuing a Zenoh distributed query.

(2) data at rest that is addressed by databases, and (3) dis-

tributed computations which usually are triggered using RPC

mechanisms.

Zenoh is the first technological stack that has a set of

primitives that are orthogonal and complete with respect to

the abstractions required for distributed computing and thus

universal.

Zenoh trivially supports pub/sub as it has first class abstrac-

tions for publishers and subscribers.

Zenoh supports data at rest since the combination of a

queryable and a subscriber can be used to represent a database.

Zenoh goes one step further and actually, provides off the

shelf the integration with a large number of DBMS sys-

tems, which can be now leveraged as geo-distributed data

stores and queried using the get operation. Additionally,

Zenoh has a built-in, data-based independent, alignment pro-

tocol [Zen(2022)] that ensures eventual consistency in spite of

disconnections and network partitions.

424

Authorized licensed use limited to: University of Technology Sydney. Downloaded on August 08,2025 at 05:30:00 UTC from IEEE Xplore.  Restrictions apply. 



Figure 5. Zenoh supported topology.

Finally, a queryable can be used to represent a distributed

computation. Additionally, this computation will be named

as opposed to be bound to a specific address, you’ll be

able to control through the get options if you trigger one or

several computations matching your query and as such even

implement mechanism such as map/reduce.

E. Communication Topology

The Zenoh protocol does not impose any topological con-

straints on how application may communicate. As shown in

Figure 5, Zenoh supports peer-to-peer over complete connec-

tivity graphs as well as over arbitrary mesh. It supports routed

communication and both routers as well as peers, can broker

communication for clients. This generality allows to support

a multitude of use cases and to scale the protocol at Internet

scale. Finally, it is worth mentioning that Zenoh’s routers are

software-based and can run very efficiently on a raspberry pi

2 or 3.

F. Ordering and Consistency

Zenoh leverages Hybrid Logical Clock

(HLC) [Kulkarni(2014)] to totally order events. While

this decision may let some distributed systems purist

disappointed, the reality is that sufficiently aligned clocks are

a reality on modern networks. GPS and radio receivers for

clock signals are extremely cheap and could be deployed with

routers if necessary. But the reality is that as cellular networks

are ubiquitous, decent clock synchronization is a commodity.

As a consequence of total ordering it is straightforward for

Zenoh to provide an Eventually Consistent consistency model.

Stronger consistency model can be easily built by leveraging

the ability to control quorums for put and get.

G. Security

Zenoh is implemented in Rust for improving security and

performance. As recently reported by the NSA [NSA(2022)],

70% of security vulnerabilities are caused by memory mis-

management. These problems are ruled out using a memory

safe programming language such as Rust. Additionally, in the

design of Zenoh we try to limit the attack surface – as an

example, our session opening protocol does not create state

on the infrastructure, it let’s the opening side keep track of

the state by using encrypted cookies. The protocol supports

pluggable authentication mechanisms along with mutual au-

thentication and secure channels.

H. Who is using it

Zenoh’s early adopters where in the telecommunica-

tion industry, as a consequence was quickly identified by

ETSI [ETSI()] as a key technologies for Multi-Access Edge

Computing (MEC). Furthermore, ITU recently recommended

Zenoh for standardization as the protocol to be used for

Intelligent Transport Systems (ITS) [ITU(2022)]. Over the

past year or so, Zenoh has established itself as the protocol

of choice for R2X (Robot-to-Anything) communication, it is

swiftly growing in popularity in V2X (Vehicle-to-Anything)

and in distributed computing as shown by recent deployments

in Internet Scale analytics frameworks and Industry-4.0 soft-

PLCs.

III. PERFORMANCE

Efficiency and performances are important for a com-

munication protocol that aims at addressing the cloud-to-

microcontroller continuum. In this section we’ll provide an

analytical analysis of Zenoh’s wire overhead and an empirical

evaluation of Zenoh’s throughput and latency when compared

to DDS and MQTT.

A. Wire Efficiency

The best way to evaluate the wire efficiency of a protocol

is to look at its message structure. Figure 6 and Figure 7 show

the structure of the data messages for MQTT and DDS. From

this it can be seen how the wire overhead added by MQTT

is linear into the length of the topic name. This is a big issue

since the topic name is a UTF-8 encoded string which tends

to be several tens of bytes.

The minimal wire-overhead is thus 6 bytes plus the length

of the topic name. To give you a concrete example, if you

have an MQTT topic called /com/acme/mysystem/devicekind/id,

this would add 32 bytes overhead to every data message. DDS

on the other hand has a wire overhead of 56 bytes assuming

that no inline QoS are sent.

Let’s look now into Zenoh. As shown in the Figure 8, Zenoh

sends frames, where a frame may contain multiple messages.

This allows to pack efficiently multiple data messages –

or other protocol messages – and further improve the wire

efficiency. If we look at the Zenoh’s data message, reported

in Figure 9, its minimal wire overhead is 3 bytes. Taking into

account the 2 bytes added by the frame we get to a total of

425

Authorized licensed use limited to: University of Technology Sydney. Downloaded on August 08,2025 at 05:30:00 UTC from IEEE Xplore.  Restrictions apply. 



| 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |

+---+---+---+---+---+---+---+---+

| messagetype | DF| QoS | R |

+---------------+---+-------+---+

~ Remaining Length (1-4 bytes) ~

+-------------------------------+

| Topic Name Length MSB |

+---+---+---+---+---+---+---+---+

| Topic Name Length LSB |

+---+---+---+---+---+---+---+---+

| |

~ Topic Name ~

| |

+---+---+---+---+---+---+---+---+

| Message ID MSB |

+---+---+---+---+---+---+---+---+

| Message ID LSB |

+---+---+---+---+---+---+---+---+

| |

~ Payload ~

| |

+---+---+---+---+---+---+---+---+

Figure 6. MQTT Data Message

1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| 'R' | 'T' | 'P' | 'S' |

+---------------+---------------+---------------+---------------+

| ProtocolVersion version | VendorId vendorId |

+---------------+---------------+---------------+---------------+

| |

+ +

| GuidPrefix guidPrefix |

+ +

| |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| INFO_TS |X|X|X|X|X|X|0|E| octetsToNextHeader |

+---------------+---------------+---------------+---------------+

| |

+ Timestamp timestamp +

| |

+---------------+---------------+---------------+---------------+

| DATA |X|X|X|X|X|D|Q|E| octetsToNextHeader |

+---------------+---------------+---------------+---------------+

| Flags extraFlags | octetsToInlineQos |

+---------------+---------------+---------------+---------------+

| EntityId readerId |

+---------------+---------------+---------------+---------------+

| EntityId writerId |

+---------------+---------------+---------------+---------------+

| |

+ SequenceNumber writerSN +

| |

+---------------+---------------+---------------+---------------+

~ ParameterList inlineQos [only if Q==1] ~

+---------------+---------------+---------------+---------------+

~ SerializedPayload serializedPayload [only if D==1 || K==1] ~

+---------------+---------------+---------------+---------------+

Figure 7. DDS Data Message

5 bytes overhead – when sending a single data message. If

Zenoh is able to batch N messages, then the wire overhead

becomes (3N + 2)/N which tends to 3 bytes fairly quickly in

N.

Based on the analysis above, we can deduce that Zenoh is

almost 20x more wire efficient than DDS. For MQTT, it really

depends on the length of the topic name. In the given example,

which represents an average topic length, Zenoh is 10x more

wire efficient.

+-------+------+------+- ... -+

| FRAME | DATA | DATA | ... |

+-------+------+------+- ... -+

Figure 8. Zenoh Frame Message

7 6 5 4 3 2 1 0

+---------------+

| DATA HEADER | 1 byte

+---------------+

~ RESOURCE ~ 1+ bytes

+---------------+

~ Payload LEN ~ 1+ bytes

+---------------+

~ Payload ~

+---------------+

Figure 9. Zenoh Data Message

Please notice that the relative difference is extremely impor-

tant in spite of the small absolute value of this overhead. If

you consider applications that send data 24x7x365 like robots,

cars, IoT devices, etc., then you can see that over time the

differences really diverge.

B. Throughput

To evaluate the throughput we use a program publishes

messages back-to-back along with a subscriber that receives

the published data and calculates the message rate (msg/s).

This test is ran for payload sizes ranging from 8 bytes to

512MB to evaluate the impact of the payload size on through-

put. Figure 10 and Figure 11 reports the measured throughput

in messages per second and bytes per second. We report both

graph, because in spite of using a logaritmic scale for the y

axis, it is only looking at this two different representation of

the same data that one can properly appreciated the difference

in performance for small and big data payloads. The dashed

line on these figures represents the throughput achieved by

iperf.

The results show that the best throughput is achieved by

Zenoh P2P across all payload-sizes, with a peak throughput

of 50 Gbps. The second best is Zenoh in a routed configuration

with 34 Gbps peak throughput. Cyclone DDS follows in third

Figure 10. Throughput in messages per second.

426

Authorized licensed use limited to: University of Technology Sydney. Downloaded on August 08,2025 at 05:30:00 UTC from IEEE Xplore.  Restrictions apply. 



Figure 11. Throughput in bytes per second per second.

Single-Host Multi-Host

MQTT 27 45

Cyclone DDS 8 37

Zenoh Routed 21 41

Zenh P2P 10 16

Zenoh Pico P2P 5 13

Ping 1 7

Figure 12. Single and multi-host latency

position with a peak throughput of 14 Gbps, while MQTT

peaks at 9 Gbps but then shows a rather erratic behaviour for

larger payloads.

C. Latency

The latency of the various protocol was evaluated using

a ping program that publishes the ping message, and a pong
program immediately echos back the received message. The

tested payload size is fixed to 64 bytes (aligned with ICMP

echo/reply). As Zenoh can run both peer-to-peer and rout-

ed/brokered, the two configuration were tested. Additionally,

when running the multiple host scenario, three hosts where

used, one for the publisher, one for the subscriber and one for

the router/broker.

The latency is defined as half of the median round-trip time

covering the ping and pong operations. Figure 12 shows the

results of the tests. The Linux ping utility was included as a

baseline of the minimum latency that can be achieved.

As it can be seen in the table reported on the Figure 12 and

focusing on the single host results, MQTT and Kafka have

a latency of 73 μs and 27 μs, respectively. As for Zenoh,

while the client mode Zenoh brokered has a latency of 21

μs, Zenoh P2P shows a latency of 10 μs. Cyclone DDS, has

a latency slightly lower than Zenoh, achieving 8 μs – this

number is lower than Zenoh P2P essentially for two reasons,

(1) the advanced packet scheduling and batcthing performed

my Zenoh and (2) the use of using UDP/IP. This explanation

is validated by looking at the latency provided by Zenoh-

Pico which is a Zenoh implementation that does not support

arbitrary mesh topologies. When testing Zenoh-Pico’s latency

while running on UDP/IP we get a latency of 5 μs – which

is the best over all.

The multiple-host scenario is ran over a 100 Gb Ethernet.

In this test scenario Zenoh brokered has a median latency of

41 μs, while Zenoh P2P has a latency of 16 μs. MQTT has a

latency of 45 μs, and Cyclone DDS of 37 μs, while Zenoh-

pico, it remains the best one at 13 μs. In conclusion Zenoh

provides the best latency on all cases.

Finally, the sourcecode for the tests used to evalu-

ate these performances are available at https://github.com/

ZettaScaleLabs/zenoh-perf.

IV. CONCLUDING REMARKS

In this paper we have introduced Zenoh, a novel protocol

that addresses the needs of applications running from the

cloud to the micro-controller continuum and which provides

a set of abstractions that unify data in motion, data at rest

and computations. We have demonstrated that Zenoh has the

lowest wire overhead, when compared to other mainstream

protocols and the highest performances both in terms of

throughput s well as in terms of latency.

At the present stage we are working on extending Zenoh

with a data-flow computing framework. This framework will

allow to define data-flow computations spanning from the data-

center down to the micro-controller and will be an extremely

natural way of integrating machine learning algorithms with

devices such as robots and cars. We are also working toward

making Zenoh’s routing completely pluggable. As of today we

support two different algorithms, but going forward, advanced

users will be able to define they own routing algorithm.

Finally, we’d like to thank the EU Horizon Europe re-

search and innovation programme under grant agreement no.

101070177 (ICOS) for funding part of this research.

V. ACRONYMS

CoAP Constrained Application Protocol

DDS Data Distribution Service

HLC Hybrid Logical Clock

LAN Local Area Network

MEC Multi-Access Edge Computing

MQTT Message Queueing Telemetry Transport

NDN Named Data Networking

WAN Wide Area Network

REFERENCES

[DDS(2017)] “The data distribution service,” 2017. [Online]. Available:
http://omg.org/spec/dds

[OASIS(2014)] OASIS, “Mq telemetry transport (mqtt) v3.1.1 protocol spec-
ification,” OASIS, Tech. Rep., October 2014.

[Shelby et al.(2014)Shelby, Hartke, and Bormann] Z. Shelby, K. Hartke, and
C. Bormann, “The Constrained Application Protocol (CoAP),” RFC
7252, Jun. 2014. [Online]. Available: https://www.rfc-editor.org/info/
rfc7252

[Corsaro(2018)] A. Corsaro, “Zenoh: The Zero Netwok Over-Head
protocol,” 2018. [Online]. Available: https://zenoh.io

[Zhang(2014)] e. a. Zhang, “Named data networking,” vol. 44, no. 3, 2014.
[Online]. Available: https://doi.org/10.1145/2656877.2656887

427

Authorized licensed use limited to: University of Technology Sydney. Downloaded on August 08,2025 at 05:30:00 UTC from IEEE Xplore.  Restrictions apply. 



[OSR(2022)] “Zenoh for robotics,” 2022. [Online]. Available: https:
//bit.ly/3by0Y51

[Zen(2022)] “Keeping storages aligned in zenoh,” 2022. [Online]. Available:
https://zenoh.io/blog/2022-11-29-zenoh-alignment/

[Kulkarni(2014)] Kulkarni, “Logical physical clocks,” in Principles of Dis-
tributed Systems: 18th International Conference, OPODIS 2014, Cortina
d’Ampezzo, Italy, December 16-19, 2014. Proceedings 18. Springer,
2014, pp. 17–32.

[NSA(2022)] NSA, “Software memory safety,” 2022. [Online].
Available: https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/
CSI_SOFTWARE_MEMORY_SAFETY.PDF

[ETSI()] ETSI, “Etsi mec – technology ecosystem.” [Online]. Available:
https://mecwiki.etsi.org/index.php?title=MEC_Ecosystem

[ITU(2022)] ITU, “Automated driving safety data protocol – specification,”
2022. [Online]. Available: https://www.itu.int/dms_pub/itu-t/opb/fg/T-
FG-AI4AD-2022-PDF-E.pdf

428

Authorized licensed use limited to: University of Technology Sydney. Downloaded on August 08,2025 at 05:30:00 UTC from IEEE Xplore.  Restrictions apply. 


